Math, asked by Anonymous, 6 months ago

2. Let a=7 ,d=3,n=8,then the value of a n is
a)25
b)27
c)20
d)28

Answers

Answered by Anonymous
18

\huge{\blue{\boxed{\green{\underline{\orange{\mathbb{Question✩}}}}}}}

a=7, d=3, n=8 find an term of A.P

a)25

b)27

c)20

d)28

\bold{\huge\pink{\boxed{{{Answer (d)➺ 28}}}}}

STEP BY STEP SOLUTION :-

 \huge \mathcal \color{maroon}{Given :-}

\\ a \: = 7 \\ d = 3 \:  \:  \\ n = 8 \:

 \huge \mathcal \color{maroon}{To \: find :-}

{}^{a}n = ?

 \huge \mathcal \color{maroon}{Solution :-}

{}^{a} n = a + (n - 1)d \\ (by \: putting \: the \: value \: of \: a,d \: and \: n) \\ ⟹7 + (8 - 1)3 \\ ⟹7 + (7 \times 3) \\ ⟹7 + 21 \:  \:  \:  \:  \:  \:  \\ ⟹an=28 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \huge \mathcal \color{maroon}{Information :- }

Here, \:  \\  \:  \: ➯ \: a=1st \: term \: of \: \: AP \\ ➯ \: d = common \: diffrence \\ ➯ \: n = number \: of \: terms \\ ➯ \:  {}^{a} n = last \: term \\ ➯ \: formula \: used = a + (n - 1)d

Answered by Anonymous
4

Hello !

Given:-

  • a = 7,
  • d = 3 and
  • n = 8.

To find :-

  • value of an.

Formula to be used :-

\huge \fbox \blue{an=a+(n-1)d}

Solution:-

\implies an = 7 + (8-1)3

\implies an = 7 + 7(3)

\implies an = 7 + 21

\implies an = 28.

hence, the value of an is 28.

option D is right

Similar questions