Math, asked by Shiva9Appu, 5 months ago

2 log (cos teeta) + log (1+ tan² teeta) =​

Answers

Answered by gauripagade20
1

Answer:

ok

Step-by-step explanation:

like

follow

me

plz

⟹2log(cosθ)+log(1+tan

2

θ)

We know that :- 1 + tan²θ = sec²θ

\implies2 log( \cos\theta ) + log( \sec ^{2}\theta )⟹2log(cosθ)+log(sec

2

θ)

Now , a log(b ) = log( b^a)

\implies log ({\cos^{2}\theta}) + log( \sec ^{2}\theta )⟹log(cos

2

θ)+log(sec

2

θ)

Now , log a + log b = log ab

\implies log ({\cos^{2}\theta} \times \sec ^{2}\theta)⟹log(cos

2

θ×sec

2

θ)

we know that secθ = 1/ cos θ

\implies log ({\cos^{2}\theta} \times \dfrac{1}{\cos^{2}\theta} )⟹log(cos

2

θ×

cos

2

θ

1

)

\implies log1⟹log1

we know log1 = 0

\implies0⟹0

Answer : 0

_____________________

\large\bf\blue{Additional-Information}Additional−Information

1. Cosθ = base / hypotenuse

2. cossecθ = 1/ sinθ

3. sec θ = 1/cosθ

4. Cotθ = 1/ tanθ

5. Sin²θ+ Cos²θ= 1

6. Sec²θ - tan²θ = 1

7. cosec ²θ - cot²θ = 1

8. sin(90°−θ) = cos θ

9. cos(90°−θ) = sin θ

10. tan(90°−θ) = cot θ

11. cot(90°−θ) = tan θ

12. sec(90°−θ) = cosec θ

13. cosec(90°−θ) = sec θ

14. Sin2θ = 2 sinθ cosθ

15. cos2θ = Cos²θ- Sin²θ

16. 1 - sin² θ = cos²θ

17. 1 - cos²θ = sin²θ

18. 1 + tan² θ= sec²θ

20. cotA = 1/tanA

21. 1 + tan²A = sec²A

22. sec²A - tan²A = 1

23. sec²A - 1 = tan²A

24. 1 + cot²A = cosec²A

25. cosec²A - 1 = cot²A

26. cosec²A - cotA = 1

ok like follow me

Similar questions