Math, asked by jawalkarvrunda, 3 months ago

-2 <= 1/2 - 2x/3 <= 11/6, x€N​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

 \rm :\longmapsto\: - 2 \leqslant \dfrac{1}{2}  - \dfrac{2x}{3}  \leqslant \dfrac{11}{6}

\rm :\longmapsto\:On \: Subtracting \: \dfrac{1}{2} \: from \: each \: term

 \rm :\longmapsto\: - 2  - \dfrac{1}{2}\leqslant \dfrac{1}{2}  - \dfrac{2x}{3} - \dfrac{1}{2}  \leqslant \dfrac{11}{6}  - \dfrac{1}{2}

 \rm :\longmapsto\: \dfrac{ - 4 - 1}{2}\leqslant   - \dfrac{2x}{3}  \leqslant \dfrac{11 - 3}{6}

 \rm :\longmapsto\:  - \dfrac{5}{2}\leqslant   - \dfrac{2x}{3}  \leqslant \dfrac{8}{6}

 \rm :\longmapsto\:  - \dfrac{5}{2}\leqslant   - \dfrac{2x}{3}  \leqslant \dfrac{4}{3}

\rm :\longmapsto\:On \: multiply \: by \:  - \dfrac{3}{2} \: to \: each \: term

 \rm :\longmapsto\:  \dfrac{15}{4}\geqslant x \geqslant  - 2

\bf\implies \: - 2 \leqslant x \leqslant \dfrac{15}{4}

\bf\implies \:x \:  \in \: \bigg[ - 2, \: \dfrac{15}{4} \bigg]

Additional information :-

\boxed{ \sf{ \: x &gt; y \implies \:  - x &lt;  - y}}

\boxed{ \sf{ \: x  &lt;  y \implies \:  - x  &gt;   - y}}

\boxed{ \sf{ \: x   \leqslant   y \implies \:  - x   \geqslant    - y}}

\boxed{ \sf{ \: x   \geqslant   y \implies \:  - x   \leqslant    - y}}

\boxed{ \sf{ \: x   \geqslant    - y \implies \:  - x   \leqslant     y}}

\boxed{ \sf{ \: x   \leqslant    - y \implies \:  - x   \geqslant     y}}

Similar questions