2^n * 6^m+1 * 10^m-n * 15^m+n-2 divided by 4^m * 3^2m+n * 25^m-1
Answers
Answered by
50
Answer:
2/3
Step-by-step explanation:
Given
2^n * 6^m+1 * 10^m-n * 15^m+n-2 divided by 4^m * 3^2m+n * 25^m-1
Now we need to apply law of exponents a^m x a^n = a^m + n and a^m / a^n = a^m – n
2^n x 2^m + 1 x 3^m + 1 x 2 ^m – n x 5^m – n x 3^m + n – 2 x 5^m + n – 2 / 2^m x 2^m x 3^2m + n x 5^m – 1 x 5^m – 1
2^n + m + 1 + m – n x 3 ^m + 1 + m + n – 2 x 5^m – n + m + n – 2 / 2^m + m x 3 ^2m + n x 5^m – 1 + m – 1
2^2m + 1 x 3^2m + n – 2 x 5^2m – 2 / 2^2m x 3^2m + n x 5 ^2m – 2
2^2m + 1 – 2m x 3^2m + n – 1 – 2m – n
2^1 x 3^-1
= 2 / 3
Answered by
34
Final answer is 2/3
Attachments:
Similar questions