Math, asked by mohit2238, 1 year ago

2^n-7 × 5^n-4 = 1250.
Then find the value of n.

Attachments:

Answers

Answered by abhi569
115

 {2}^{n - 7}  \times  {5}^{n - 4}  = 1250 \\  \\  \\  \\  =  >  {2}^{n - 7}  \times  {5}^{n - 4}  = 2 \times 625 \\  \\  \\   =  >  {2}^{n - 7}  \times  {5}^{n - 4}  =  {2}^{1}  \times  {5}^{4}





On comparing values, we get


Taking,  2^{n - 7} = 2^{1}


⏩ n - 7 = 1

⏩ n = 1 + 7

▶n = 8






 \boxed{ \bold{ \underline{Value  \:  \: o f  \:  \: n  \:  \: is \:  \:  8}}}


Answered by DevilDoll12
37
Heya!
--------

==========================================================

♦Given that =>
============


 =  > 2 {}^{n - 7}  \times 5 {}^{n - 4}  = 1250 \\  \\  =  > 2 {}^{n - 7}   \times 5 {}^{n - 4}  = 2 \times 5 {}^{4}


◾Comparing the Indices of the Like Bases ,


=> n - 7 = 1

=> n = 8..............(1)

.
=> n - 4 = 4

=> n = 8.............(2)



➡Hence the Value of n is 8


===========================================================
Similar questions