Physics, asked by asifkrahim, 1 month ago

2 ohm resistor and 6 ohm resistor are connected in series with a 4 V battery. Calculate amount of charge passing through the battery in 10 seconds​

Answers

Answered by Sauron
109

Answer:

5 C if current is passing through the circuit in 10 seconds.

Explanation:

Resistors = 2 Ω and 6 Ω

Battery of = 4 Volts

Time = 10 seconds

___________________

★ Equivalent Resistance =

\sf{\longrightarrow} \: R_s =R_1 +  R_2

  • \sf{R_1} = 2 Ω
  • \sf{R_2} = 6 Ω

\sf{\longrightarrow} \: R_s = 2 + 6

\sf{\longrightarrow} \: R_s = 8 \:ohms

___________________

★ Current in the circuit =

\sf{\longrightarrow} \: I =  \dfrac{V}{R}

  • V = 4 V
  • R = 8 Ω

\sf{\longrightarrow} \: I =  \dfrac{4}{8}

\sf{\longrightarrow} \: I =  \dfrac{1}{2} \:  A

___________________

★ Amount of charge passing:

\sf{\longrightarrow} \: Q=IT

  • I = 1/2 A
  • T = 10 seconds

\sf{\longrightarrow} \: Q= \dfrac{1}{2} \times 10

\sf{\longrightarrow} \: Q=5 \: coulomb

Therefore, 5 C if current is passing through the circuit in 10 seconds.

Answered by BrainlyMilitary
76

Given : 2 ohm resistor and 6 ohm resistor are connected in series with a 4 V ( or Volt ) battery and the Total time taken is 10 s ( or Second ) .

Exigency To Find : The amount of charge passing through the battery .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Given that ,

⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀⠀The battery of is of 4 V ( or Volt ) [ V ] .

⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀ The Total Time taken [ T ] is 10 s ( or Seconds ) .

⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀2 ohm resistor and 6 ohm resistor are connected in series [ R ].

⠀⠀⠀⠀⠀Therefore,

⠀⠀⠀⠀⠀⠀⠀⠀▪︎⠀⠀EQUIVALENT RESISTANCE will be :

As , We know that ,

\qquad:\implies \sf R_eq\:\:( \:Equivalent \:Resistance \:)\: \:=\:R_1 \:(Resistance\:1 )\:+ R_2\:(Resistance \:2 )\:\:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad:\implies \sf R_eq\:\:( \:Equivalent \:Resistance \:)\: \:=\:R_1 + R_2\:\:\:\\\\

\qquad:\implies \sf R_eq\:\:( \:Equivalent \:Resistance \:)\: \:=\:2 + 6 \:\:\:\\\\

\qquad:\implies \sf R_eq\:\:( \:Equivalent \:Resistance \:)\: \:=\:8 \:\Omega \:\:\:\\\\

\qquad \therefore \pmb{\underline{\purple{\:R_eq\:\:( \:Equivalent \:Resistance \:)\: \:=\:8 \:\Omega  }} }\:\:\bigstar \\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Firstly, We need to find the Amount of Current in circuit :

As , We know that ,

\qquad \dag \:\:\: \boxed {\underline {\pink{ \pmb { Current \:(I)\:\:= \:\dfrac{Volt \:\:(V)\:}{Resistance \:(R)\:} }}}}\\\\

\qquad \dashrightarrow \sf Current \:(I)\:\:= \:\dfrac{ Volt \:(V) \:}{Resistance \:\:(R)\:} \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf Current \:(I)\:\:= \:\dfrac{Volt \:\:(V)\:}{Resistance \:(R)\:} \\\\

\qquad \dashrightarrow \sf Current \:(I)\:\:= \:\dfrac{4\:}{8\:} \\\\

\qquad \dashrightarrow \sf Current \:(I)\:\:= \:\dfrac{1\:}{2\:} \\\\

\qquad \therefore \pmb{\underline{\purple{\:Current \:(I)\:\:= \:\dfrac{1\:}{2\:} \:A   }} }\:\:\bigstar \\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀Now , Finding the amount of Charge passing through it :

As , We know that ,

\qquad \dag \:\:\: \boxed{ \underline {\pink{ \pmb {Charge \:(Q)\:\:= \:I( Current)\:\times \:T(Time)\: }}}}\\\\

\qquad \dashrightarrow \sf  Charge \:(Q)\:\:= \:I( Current)\:\times \:T(Time)\:\: \\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf  Charge \:(Q)\:\:= \:I( Current)\:\times \:T(Time)\:\: \\\\

\qquad \dashrightarrow \sf  Charge \:(Q)\:\:= \:\dfrac{1}{2} \:\times \:10\:\: \\\\

\qquad \dashrightarrow \sf  Charge \:(Q)\:\:= \:\dfrac{10}{2} \:\:\: \\\\

\qquad \dashrightarrow \sf  Charge \:(Q)\:\:= \:5\:\:\: \\\\

\qquad \therefore \pmb{\underline{\purple{\:Charge \:(Q)\:\:= \:5\:\:C\:( \:or\:coulomb\:)   }} }\:\:\bigstar \\

\therefore \underline { \sf Hence , \: The \:amount\:of\:charge \:passing \:through \:battery\:in \: 10 \:seconds \: is \: \bf 5 \: coulomb \:}

Similar questions