Math, asked by shubhamy266, 8 months ago

2 points
18. If (3x - 15) and (x + 5) are
complementary angles , then the
angles are
0 45 and 30
O 60 and 30
O 40 and 50
O 75 and 15​

Answers

Answered by Anonymous
4

\huge\bigstar{\red{\underline{\underline{GIVEN}}}}

\large\longrightarrow{\sf{\green{Two\: angles\: (3x-15)\degree\:and\: (x+5)°}}}

\huge\bigstar{\red{\underline{\underline{To\:Find\:}}}}

\large\longrightarrow{The\: Angles. }

\huge\bigstar{\red{\underline{\underline{SOLUTION}}}}

\large\bold\longrightarrow{\sf{\red{We\: know\: that \:two \:angles\: are\: called\: complementary \:when\: their\: measures\: add \:to \:90°.}}}

\huge\bold\blue{SO\: ATQ, }

\large\pink\Longrightarrow\pink{(3x-15)°+(x+5)°=90°}

\large\pink\Longrightarrow\pink{3x-15+x+5=90°}

\large\pink\Longrightarrow\pink{4x-10=90°}

\large\pink\Longrightarrow\pink{4x=90+10}

\large\pink\Longrightarrow\pink{4x=100}

\large\pink\Longrightarrow\pink{x=\frac{100}{4}}

\large\pink\therefore\boxed{\sf{\pink{x=25}}}

Therefore, the angles are:-

\large\Longrightarrow{(3x-15)=(3×25-15)=(75-15)=60°}

\large\Longrightarrow{(x+5)=(25+5)=30°}

\large\blue{\underline{Now \:let's\: verify\: it:-}}

As we know that two angles are called complementary when their measures add to 90°

So, by adding 60° and 30° we get 90°.

\large\therefore{\sf{\green{\underline{\underline{THE \:ANGLES\: ARE:30°, 60°}}}}}

Similar questions