Math, asked by varmalohith3244, 11 months ago

π/2
Prove that ∫ (2 log sinx-log sin 2x)dx= - π/2 log 2
0

Answers

Answered by ubaidmuazzam
0
A bag contains Rs.396 in terms of 50paise, 2rupee and 5rupee coins in the ratio 4:3:2. Find the number of each type of coins
Answered by bestwriters
0

Given:  

\bold{\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x = -\frac{\pi}{2} \log 2 \times}

Solution:

Let us take equation in L.H.S as I_1:

\mathrm{I}_{1}=\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x

\mathrm{I}_{1}=\int_{0}^{\frac{\pi}{2}}[2 \log \sin x-\log (2 \sin x \cos x)] d x

\bold{[\because \sin 2 \theta=2 \sin \theta \cos \theta]}

\mathrm{I}_{1}=\int_{0}^{\frac{\pi}{2}}[2 \log \sin x-\log 2-\log \sin x-\log \cos x] d x

\bold{[\because \log (a b)=\log a+\log b]}

\mathrm{I}_{1}=\int_{0}^{\frac{\pi}{2}}[\log \sin x-\log 2-\log \cos x] d x

\mathrm{I}_{1}=\int_{0}^{\frac{\pi}{2}} \log \sin x d x-\int_{0}^{\frac{\pi}{2}} \log 2 d x-\int_{0}^{\frac{\pi}{2}} \log \cos x d x \rightarrow (1)

Now let us simplify the solution by considering \int_{0}^{\frac{\pi}{2}} \log \cos x d x = I_2

\mathrm{I}_{2}=\int_{0}^{\frac{\pi}{2}} \log \cos x d x

[\because \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x]

\mathrm{I}_{2}=\int_{0}^{\frac{\pi}{2}} \log \cos \left(\frac{\pi}{2}-x\right) d x

\therefore \mathrm{I}_{2}=\int_{0}^{\frac{\pi}{2}} \log \sin x d x

On substituting I_2 in equation (1), we get,

\mathrm{I}_{1}=\int_{0}^{\frac{\pi}{2}} \log \sin x d x-\int_{0}^{\frac{\pi}{2}} \log 2 d x-\int_{0}^{\frac{\pi}{2}} \log \sin x d x

\mathrm{I}_{1}=-\int_{0}^{\frac{\pi}{2}} \log 2 d x

Since \log 2 is constant, we get,

\mathrm{I}_{1}=-\log 2 \int_{0}^{\frac{\pi}{2}} d x

\mathrm{I}_{1}=-\log 2[x]_{0}^{\frac{\pi}{2}}

On substituting the limits, we get,

\mathrm{I}_{1}=-\log 2\left[\frac{\pi}{2}-0\right]

\mathrm{I}_{1}=-\log 2 \times \frac{\pi}{2} = R.H.S

\int_{0}^{\frac{\pi}{2}}(2 \log \sin x-\log \sin 2 x) d x = -\frac{\pi}{2} \log 2 \times

Hence proved.

Similar questions