Math, asked by samratdecolambokaro, 2 months ago

2- rootunder5 / 2+ rootunder5 = a rootunder5 + b . Find the value of a and b.​

Answers

Answered by Sauron
38

Question:

Find the value of a and b if,

\sf \dfrac{2 -  \sqrt{5} }{2 +  \sqrt{5}}  = a \sqrt{5} + b

Answer:

The values are: a is 4 and b is (-9).

Step-by-step explanation:

\longrightarrow \: \sf \dfrac{2 -  \sqrt{5} }{2 +  \sqrt{5}}  = a \sqrt{5} + b

Rationalize the denominator.

\rightarrow \: \sf \dfrac{(2 -  \sqrt{5}) \times (2 -  \sqrt{5})  }{2 +  (\sqrt{5}) \times (2 -  \sqrt{5})}  = a \sqrt{5} + b

\rightarrow \sf \dfrac{(2 -  \sqrt{5})^{2} }{ {2}^{2}   -  (2)( \sqrt{5})  + (2)( \sqrt{5} ) -  { (\sqrt{5}) }^{2}}  = a \sqrt{5} + b

\rightarrow \: \sf \dfrac{4 - 4 \sqrt{5} + 5 }{4 - 2 \sqrt{5} + 2 \sqrt{5} - 5}  = a \sqrt{5} + b

\rightarrow \: \sf \dfrac{4 - 4 \sqrt{5} + 5 }{4 - 5}  = a \sqrt{5} + b

\rightarrow \: \sf \dfrac{4 - 4 \sqrt{5} + 5 }{ - 1}  = a \sqrt{5} + b

\rightarrow \: \sf { - 4  +  4 \sqrt{5}  -  5 }  = a \sqrt{5} + b

\rightarrow \: \sf {  4\sqrt{5}  -  9 }  = a \sqrt{5} + b

\rightarrow \: \sf {  \red{4}\sqrt{5}  + \blue{( -  9 )}}  = \red{a} \sqrt{5} + \blue{b}

Here, we can see that,

  • a = 4
  • b = (-9)

Therefore, a is 4 and b is (-9).

Answered by BrainlyArnab
4

Answer:

 \huge \sf \red{a = 4} \\  \huge \sf \blue{b =  - 9}

Step-by-step explanation:

 \sf \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  = a \sqrt{5}  + b \\   \\  =    > \sf  \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  \times  \frac{2 -  \sqrt{5} }{2 -  \sqrt{5} }  =  a\sqrt{5}  + b \\  \\  =  > \sf  \frac{(2 -  \sqrt{5}  {)}^{2} }{ {2}^{2}  -  { \sqrt{5} }^{2} }  =  a\sqrt{5}  + b \\( \sf \: using \: formula(a + b)(a - b) =  {a}^{2}  -  {b}^{2} ) \\ \\   =  >  \sf \frac{ {2}^{2} - (2)(2)( \sqrt{5}) +  \sqrt{ {5}^{2} }   }{4 - 5}  =  a\sqrt{5}  + b \\ ( \sf \: using \: formula(a  -  b {)}^{2}  =  {a}^{2}  - 2ab -  {b}^{2} ) \\  \\  =  >   \sf\frac{4 - 4 \sqrt{5} + 5 }{ - 1}  =  a\sqrt{5}  + b \\  \\  =  >  \sf \frac{ - 4 \sqrt{5} + 9 }{ - 1}  = a \sqrt{5}  + b \\  \\  =  >  \sf4 \sqrt{5}  - 9 =  a\sqrt{5}  + b \\  \sf {\: hence  \: {a = 4 \: and \: b =  - 9}}

hope it helps.

Similar questions