Math, asked by anjalichand768, 8 months ago

2. Show.
Sec2x + cosec2x=sec2x*cosec2x​

Answers

Answered by MaheswariS
0

\underline{\textsf{To show:}}

\mathsf{sec^2x+cosec^2x=sec^2x\;cosec^2x}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{sec^2x+cosec^2x}

\mathsf{=\dfrac{1}{cos^2x}+\dfrac{1}{sin^2x}}

\mathsf{=\dfrac{sin^2x+cos^2x}{cos^2x\;sin^2x}}

\mathsf{=\dfrac{1}{cos^2x\;sin^2x}}

\mathsf{=\dfrac{1}{cos^2x}\times\dfrac{1}{sin^2x}}

\mathsf{=sec^2x{\times}cosec^2x}

\implies\boxed{\bf\mathsf{sec^2x+cosec^2x=sec^2x\;cosec^2x}}

Find more:

Prove that 1-sin^2x/1+cotx-cos^2x/1+tanx=sinxcossx

https://brainly.in/question/4927186

Tan(π/4+x)-tan(π/4-x)=2tan 2x

https://brainly.in/question/10999329

Answered by AditiHegde
0

Given:

Sec2x + cosec2x = sec2x * cosec2x​

To find:

To prove Sec2x + cosec2x = sec2x * cosec2x​

Solution:

From given, we have,

Sec²x + cosec²x = sec²x × cosec²x

​Now consider the LHS part of the given equation.

Sec²x + cosec²x

= 1/cos²x + 1/sin²x

= (sin²x + cos²) / (cosx × sinx)

= 1 / (cosx × sinx)

= 1/cosx × 1/sinx

= sec x × cosec x

Therefore, its proved that Sec²x + cosec²x = sec²x × cosec²x​

Similar questions