Math, asked by rvrao1976, 9 months ago

2.
Show that (cosec 0 - cot 0)2 =
1- cos e
1+ cos 0​

Answers

Answered by Brâiñlynêha
33

\huge\mathbb{ANSWER}

\sf\underline{\blue{\:\:\:\:\: Given:-\:\:\:\:\:}}

\sf \hookrightarrow(cosec\theta -cot\theta){}^{2}=\dfrac{1-cos\theta}{1+cos\theta}

  • We have to prove that

\sf\underline{\pink{\:\:\:\:\: Solution:-\:\:\:\:\:}}

\sf \leadsto cosec \:\theta=\dfrac{1}{sin\theta}\\ \\ \sf \leadsto cot \:\theta=\dfrac{cos\theta}{sin\:\sin\theta}

Now :-

  • L.H.S

\sf\implies (cosec\theta -cot\theta){}^{2}\\ \\ \sf\implies cosec{}^{2}\theta+cot{}^{2}\theta-2cot\theta.cosec\theta\\ \\ \sf\:\: put\:the\:value\:of\:cosec\theta\:and\:cot\:theta\\ \\ \sf\implies \dfrac{1}{sin{}^{2}\theta}+\dfrac{cos{}^{2}\theta}{sin{}^{2}\theta}+2\times \dfrac{1}{sin\theta}\times \dfrac{cos\theta}{sin\theta}\\ \\ \sf\implies \dfrac{1+cos{}^{2}\theta}{sin{}^{2}\theta} -\dfrac{2cos\theta}{sin{}^{2}\theta}\\ \\ \sf\implies \dfrac{1+cos{}^{2}\theta-2cos\theta}{sin{}^{2}\theta}\\ \\ \sf \:\:\:it\: become\:in\:form\:of\:(a-b){}^{2}\\ \\ \sf\implies sin{}^{2}\theta=1-cos{}^{2}\theta\\ \\ \sf\implies\dfrac{(1-cos\theta){}^{2}}{1-cos{}^{2}\theta}\\ \\ \sf\implies \dfrac{(1-cos\theta)\times \cancel{(1-cos\theta)}}{(1+cos\theta)\times \cancel{(1-cos\theta)}}\\ \\ \sf\implies \dfrac{1-cos\theta}{1+cos\theta}\\ \\ \sf\:\:\:Hence\:\: Proved !!

\boxed{\sf{\purple{\dfrac{1-cos\theta}{1+cos\theta}=\dfrac{1-cos\theta}{1+cos\theta}}}}

Answered by Itzharyanvi21
6

\huge{\mathfrak{\underline{\underline \green{Answer}}}}

\large{\sf{\underline{\underline \blue{Given:-}}}}

•We have to prove that

\large\tt\ (cosec \thetha \: - \: cot \thetha)^2 \: = \: \frac{1 \: - \: cos \thetha}{1 \: + \: cos \thetha}

Similar questions