Math, asked by madsidd2812, 11 months ago

π/2∫ sin²x/sin x+cosx dx =1/√2 log(√2+1) ,Prove it.0

Answers

Answered by rishu6845
0

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by sk940178
0

Answer:

Proved that,  \int\limits^\frac{\pi }{2} _0 {\frac{Sin^{2}x }{Sinx+Cosx} } \, dx=\frac{1}{\sqrt{2} } ln(\sqrt{2}+1 )

Step-by-step explanation:

We have to prove that, \int\limits^\frac{\pi }{2} _0 {\frac{Sin^{2}x }{Sinx+Cosx} } \, dx=\frac{1}{\sqrt{2} } ln(\sqrt{2}+1 )

Let us assume, I = \int\limits^\frac{\pi }{2} _0 {\frac{Sin^{2}x }{Sinx+Cosx} } \, dx ...... (1)

= \int\limits^\frac{\pi }{2} _0 {\frac{Sin^{2}(\frac{\pi }{2}- x) }{Sin(\frac{\pi }{2} -x)+Cos(\frac{\pi }{2} -x)} } \, dx {Using properties of definite integral}

I = \int\limits^\frac{\pi }{2} _0 {\frac{Cos^{2}x }{Cosx+Sinx} } \, dx .......(2)

Now, by (1) + (2) we get

2I = \int\limits^\frac{\pi }{2} _0 {\frac{Sin^{2}x }{Sinx+Cosx} } \, dx +\int\limits^\frac{\pi }{2} _0 {\frac{Cos^{2}x }{Sinx+Cosx} } \, dx

⇒ 2I = \int\limits^\frac{\pi }{2} _0 {\frac{1}{Sinx+Cosx} } \, dx

I = \frac{1}{2} \int\limits^\frac{\pi }{2} _0 {\frac{1}{Sinx+Cosx} } \, dx........ (3)

Now we will do the indefinite integral first, then will put the limits to get the definite value.

Let, I' =∫\frac{dx}{Sinx+Cosx}

=∫\frac{dx}{2Sin\frac{x}{2}Cos\frac{x}{2}+2Cos^{2}\frac{x}{2}-1    }

= ∫\frac{Sec^{2}\frac{x}{2}dx  }{2tan\frac{x}{2}+2-Sec^{2}\frac{x}{2}   }

= ∫\frac{2d[tan\frac{x}{2} ]}{2tan\frac{x}{2}+1-tan^{2}\frac{x}{2}   }

= -2∫\frac{d[tan\frac{x}{2} ]}{tan^{2}\frac{x}{2}-2tan\frac{x}{2}-1   }

= -2∫\frac{dz}{z^{2}-2z-1 } {Where, z= tan\frac{x}{2}}

= -2∫\frac{d(z-1)}{(z-1)^{2}-(\sqrt{2}) ^{2}  }

[Using the formula, ∫\frac{dx}{x^{2}-a^{2}  }=\frac{1}{2a}ln\frac{x-a}{x+a}]

= \frac{-2}{2\sqrt{2} }ln\frac{z-1-\sqrt{2} }{z-1+\sqrt{2} } +C {Where C is an integration constant}

= \frac{-1}{\sqrt{2} } ln\frac{tan\frac{x}{2}-1-\sqrt{2}  }{tan\frac{x}{2}-1+\sqrt{2}  }+C

Now, putting the limits we will get the value of I from equation (3).

Hence, I = \frac{1}{2} [\frac{-1}{\sqrt{2} } ln\frac{tan\frac{x}{2}-1-\sqrt{2}  }{tan\frac{x}{2}-1+\sqrt{2}  }]_{0} ^{\frac{\pi }{2} } { C will be cancelled}

= \frac{-1}{2\sqrt{2} } [0-ln\frac{\sqrt{2}+1 }{\sqrt{2}-1 } ]

= \frac{1}{2\sqrt{2} }ln\frac{(\sqrt{2}+1 )^{2} }{1}

= \frac{1}{\sqrt{2} } ln(\sqrt{2}+1 )

Hence, proved.

Similar questions