Math, asked by Steven6073, 11 months ago

π/4∫ log(1+tan x)dx=π/8 log 2 ,Prove it.0

Answers

Answered by rishu6845
2

Step-by-step explanation:

plzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by bestwriters
2

Given:

\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x=\frac{\pi}{8} \log 2

Step-by-step explanation:

Let us consider,

I = \int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x

I = \int_{0}^{\frac{\pi}{4}} \log \left(1+\tan \left(\frac{\pi}{4}-x\right)\right) d x

\bold{[\because \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x]}

I =\int_{0}^{\frac{\pi}{4}} \log \left(1+\frac{1-\tan x}{1+\tan x}\right) d x

\bold{[\because \tan \left(\frac{\pi}{4}-x\right)= \frac{1-\tan x}{1+\tan x}\right]]}

I = \int_{0}^{\frac{\pi}{4}} \log \left(\frac{1+\tan x + 1-\tan x }{1+\tan x}\right) d x

I =\int_{0}^{\frac{\pi}{4}} \log \left(\frac{2}{1+\tan x}\right) d x

I =\int_{0}^{\frac{\pi}{4}} \log 2 d x-\int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x

\bold{\left[\because \log \left(\frac{a}{b}\right)=\log a-\log b\right]}

I =\int_{0}^{\frac{\pi}{4}} \log 2 d x-I

I + I=\int_{0}^{\frac{\pi}{4}} \log 2 d x

2 I=\int_{0}^{\frac{\pi}{4}} \log 2 d x

I=\log 2 \times \frac{\pi}{4} \times \frac{1}{2}

I =\frac{\pi}{8} \log 2

\therefore \int_{0}^{\frac{\pi}{4}} \log (1+\tan x) d x=\frac{\pi}{8} \log 2

Hence proved.

Similar questions