2(sin6θ+cos6θ)−3(sin4θ+cos4θ)
Answers
Answered by
0
LHS=2(sin
6
θ+cos
6
θ)−3(sin
4
θ+cos
4
θ)+1
=2{(sin
2
θ+cos
2
θ)
3
−3sin
2
θcos
2
θ(sin
2
θ+cos
2
θ)}−3(sin
2
θ+cos
2
θ)
2
−2(sin
2
θcos
2
θ)}+1
We know, [sin²x+cos²x=1]
=2{1−3sin
2
θcos
2
θ}−3{1−2sin
2
θcos
2
θ}+1
=2−6sin
2
θcos
2
θ−3+6sin
2
θcos
2
θ+1
=0
=RHS
Answered by
0
Answer:
LHS=2(sin
6
θ+cos
6
θ)−3(sin
4
θ+cos
4
θ)+1
=2{(sin
2
θ+cos
2
θ)
3
−3sin
2
θcos
2
θ(sin
2
θ+cos
2
θ)}−3(sin
2
θ+cos
2
θ)
2
−2(sin
2
θcos
2
θ)}+1
We know, [sin²x+cos²x=1]
=2{1−3sin
2
θcos
2
θ}−3{1−2sin
2
θcos
2
θ}+1
=2−6sin
2
θcos
2
θ−3+6sin
2
θcos
2
θ+1
=0
=RHS
Step-by-step explanation:
Similar questions
Math,
9 days ago
Computer Science,
9 days ago
Environmental Sciences,
9 days ago
Math,
19 days ago
Math,
19 days ago
Chemistry,
9 months ago
English,
9 months ago
Social Sciences,
9 months ago