2(sin6θ + cos6θ) − 3(sin4θ + cos4θ) is equal to
A. 0
B. 1
C. −1
D. None of these
Answers
Step-by-step explanation:
It's answer is -1 because this explanation is given in the pic see and get your answer
Given : 2(sin⁶θ + cos⁶θ) − 3(sin⁴θ + cos⁴θ)
solution :
First, we take sin⁶ θ + cos⁶ θ = (sin²θ)³ + (cos²θ)³
By using this identity : (a + b)³ = a³ + b³ + 3a²b + 3ab²
From this identity we have : a³ + b³ = (a + b)³ – 3a²b – 3ab²
= (sin² θ + cos²θ)³ – 3 (sin²θ)² cos² θ – 3 sin²θ (cos² θ)²
= 1 - 3 sin⁴θ cos² θ – 3 sin²θ cos⁴θ
[ sin² θ + cos² θ = 1]
= 1 - 3 sin²θ cos²θ [sin² θ + cos² θ]
= 1 - 3 sin² θ cos² θ …………(1)
[sin²θ + cos²θ = 1 ]
Now, we take
sin⁴θ + cos⁴θ = (sin²θ)² + (cos²θ)²
By using this identity (a + b)² = a² + b² + 2ab
From this identity we have : a² + b² = (a + b)² – 2ab
= (sin²θ + cos²θ)² – 2 sin²θ cos²θ
= 1 - 2 sin²θ cos²θ …………….(2)
[sin² θ + cos² θ = 1]
Now, using eq (1) and (2), we have:
2(sin⁶θ + cos⁶θ) − 3(sin⁴θ + cos⁴θ)
= 2(1 - 3 sin² θ cos² θ) – 3(1 - 2 sin²θ cos²θ)
= 2 - 6 sin² θ cos² θ - 3 + 6 sin² θ cos² θ
= 2 - 3
= - 1
2(sin⁶θ + cos⁶θ) − 3(sin⁴θ + cos⁴θ) = - 1
Hence, 2(sin⁶θ + cos⁶θ) − 3(sin⁴θ + cos⁴θ) is equal to - 1.
Among the given options option (C) - 1 is correct.
HOPE THIS ANSWER WILL HELP YOU……
Some more questions :
If x = a sec θ and y = b tan θ, thenb²x²-a²y² =
(a)ab
(b)a² − b²
(c)a² + b²
(d)a² b²
https://brainly.in/question/11828258
If x = a cos θ and y = b sin θ, then b²x²=a²y² =
(a)a² b²
(b)ab
(c)a⁴ b⁴
(d)a² + b²
https://brainly.in/question/11828193