2(sin6A+cos6A)-3(sin4A+cos4A)+1=0
Answers
Answered by
7
2(sin6a+cos6a)
-3(sin4a+cos4a)+1=0
=2[(sin2a)3+(cos2a)3]
-3[(sin2a)2+(cos2a)2]+1
=2[(sin2a+cos2a)3
-3sin2acos2a(sin2a+cos2a)]
-3[(sin2a+cos2a)2
-2sin2acos2a]+1
=2[1-3sin2acos2a]
-3[1-2sin2acos2a]+1
=2-6sin2acos2a
-3+6sin2acos2a+1
=0
Hence proved
 Tabbu Singh answered this
2(sin6a+cos6a)
-3(sin4a+cos4a)+1=0
=2[(sin2a)3+(cos2a)3]
-3[(sin2a)2+(cos2a)2]+1
=2[(sin2a+cos2a)3
-3sin2acos2a(sin2a+cos2a)]
-3[(sin2a+cos2a)2
-2sin2acos2a]+1
=2[1-3sin2acos2a]
-3[1-2sin2acos2a]+1
=2-6sin2acos2a
-3+6sin2acos2a+1=0
Hence prove Thank you
-3(sin4a+cos4a)+1=0
=2[(sin2a)3+(cos2a)3]
-3[(sin2a)2+(cos2a)2]+1
=2[(sin2a+cos2a)3
-3sin2acos2a(sin2a+cos2a)]
-3[(sin2a+cos2a)2
-2sin2acos2a]+1
=2[1-3sin2acos2a]
-3[1-2sin2acos2a]+1
=2-6sin2acos2a
-3+6sin2acos2a+1
=0
Hence proved
 Tabbu Singh answered this
2(sin6a+cos6a)
-3(sin4a+cos4a)+1=0
=2[(sin2a)3+(cos2a)3]
-3[(sin2a)2+(cos2a)2]+1
=2[(sin2a+cos2a)3
-3sin2acos2a(sin2a+cos2a)]
-3[(sin2a+cos2a)2
-2sin2acos2a]+1
=2[1-3sin2acos2a]
-3[1-2sin2acos2a]+1
=2-6sin2acos2a
-3+6sin2acos2a+1=0
Hence prove Thank you
Tanujyadav122222:
Nice Solution
Similar questions