2. Solve the following quadratic equations using quadratic formula
Attachments:
Answers
Answered by
1
Answered by
0
Compare given Quadratic equation
36x² -12ax + ( a² - b² ) = 0 with
Ax² + Bx + C = 0 we get ,
A = 36 , B = -12a , C = a² - b² ,
Discreminant ( D ) = B² - 4AC
= ( -12a )² - 4 × 36 × ( a² - b² )
= 144a² - 144( a² - b² )
= 144a² - 144a² + 144b²
D = 144b²
By Quadratic Formula :
x = [ -B ± √D ]/2A
= [ -( -12a ) ± √ ( 144b² ) ]/( 2 × 36 )
= [ 12a ± 12b ]/72
= [ 12( a ± b ) ]/72
= ( a ± b )/6
Therefore ,
x = ( a + b )/6 or x = ( a - b )/6
••••
36x² -12ax + ( a² - b² ) = 0 with
Ax² + Bx + C = 0 we get ,
A = 36 , B = -12a , C = a² - b² ,
Discreminant ( D ) = B² - 4AC
= ( -12a )² - 4 × 36 × ( a² - b² )
= 144a² - 144( a² - b² )
= 144a² - 144a² + 144b²
D = 144b²
By Quadratic Formula :
x = [ -B ± √D ]/2A
= [ -( -12a ) ± √ ( 144b² ) ]/( 2 × 36 )
= [ 12a ± 12b ]/72
= [ 12( a ± b ) ]/72
= ( a ± b )/6
Therefore ,
x = ( a + b )/6 or x = ( a - b )/6
••••
Similar questions