2. Solve the following quadratic equations using quadratic formula
Attachments:
Answers
Answered by
0
(x - 1)/(x + 1) + (x - 3)/(x - 4) = 10/3
[(x - 1)(x - 4) + (x - 3)(x + 1)]/(x + 1)(x - 4) = 10/3
3[x² - 4x - x + 4 + x² + x - 3x - 3] = 10(x² - 4x + x - 4)
3[2x² - 7x + 1] = 10(x² - 3x - 4)
6x² - 21x + 3 = 10x² - 30x - 40
4x² - 9x - 43 = 0
where, a = 4 , b = -9 , c = -43
D = b² - 4ac
D = (-9)² - 4(4)(-43)
D = 81 + 688
D = 769
√D = √769
quadratic formula =
X =
X =
X =
X =
[(x - 1)(x - 4) + (x - 3)(x + 1)]/(x + 1)(x - 4) = 10/3
3[x² - 4x - x + 4 + x² + x - 3x - 3] = 10(x² - 4x + x - 4)
3[2x² - 7x + 1] = 10(x² - 3x - 4)
6x² - 21x + 3 = 10x² - 30x - 40
4x² - 9x - 43 = 0
where, a = 4 , b = -9 , c = -43
D = b² - 4ac
D = (-9)² - 4(4)(-43)
D = 81 + 688
D = 769
√D = √769
quadratic formula =
X =
X =
X =
X =
Answered by
0
Compare 4x² - 9x - 43 = 0 with
ax² + bx + c = 0 , We get
a = 4 , b = -9 , c = -43 ,
Discreminant ( D ) = b² - 4ac
= ( -9 )² - 4 × 4 × ( -43 )
= 81 + 688
= 769
D = 769
By Quadratic Formula :
x = [ -b ± √D ]/2a
x = [-(-9) ± √769 ]/( 2 × 4)
x = [ 9 ± √769 ]/8
••••
ax² + bx + c = 0 , We get
a = 4 , b = -9 , c = -43 ,
Discreminant ( D ) = b² - 4ac
= ( -9 )² - 4 × 4 × ( -43 )
= 81 + 688
= 769
D = 769
By Quadratic Formula :
x = [ -b ± √D ]/2a
x = [-(-9) ± √769 ]/( 2 × 4)
x = [ 9 ± √769 ]/8
••••
Attachments:
Similar questions