2. Solve the following quadratic equations using quadratic formula
Attachments:
Answers
Answered by
4
In the given equation,
a = a²
b = (a² - b²)
c = -b²
Discriminant = b² - 4ac
=> (a² - b²)² - 4(a²)(-b²)
=> a⁴ + b⁴ - 2a²b² + 4a²b²
=> (a⁴ + b⁴ + 2a²b²)
=> (a² + b²)²
Now, applying quadratic equation,
x = -2a²÷2a²
x = - 1
I hope this will help you
(-:
a = a²
b = (a² - b²)
c = -b²
Discriminant = b² - 4ac
=> (a² - b²)² - 4(a²)(-b²)
=> a⁴ + b⁴ - 2a²b² + 4a²b²
=> (a⁴ + b⁴ + 2a²b²)
=> (a² + b²)²
Now, applying quadratic equation,
x = -2a²÷2a²
x = - 1
I hope this will help you
(-:
Answered by
2
Compare given Quadratic equation
a²x² + ( a² - b²)x - b² = 0 with
Ax² + Bx + C = 0 we get,
A = a² , B = ( a² - b² ) , C = - b² ,
Discreminant ( D ) = B² - 4AC
= ( a² - b² )² - 4× a² ×( -b² )
= [ ( a²)² + ( b²)² - 2a²b² + 4a²b²
= ( a² )² + ( b² )² + 2a²b²
D = ( a² + b² )²
Quadratic Formula :
x = [ - B ± √D ]/2A
=> x = [ -(a²-b²) ± √(a²+b²)² ]/2a²
=> x = [ - a² + b² ± ( a² + b² ) ]/2a²
Therefore ,
i ) x = [-a²+b²+a²+b²]/2a²
x = 2b²/2a²
x = b²/a²
Or
ii ) x = ( -a² + b² - a² - b² )/2a²
x = -2a²/2a²
x = - 1
Therefore ,
x = b²/a² or x = -1
••••
a²x² + ( a² - b²)x - b² = 0 with
Ax² + Bx + C = 0 we get,
A = a² , B = ( a² - b² ) , C = - b² ,
Discreminant ( D ) = B² - 4AC
= ( a² - b² )² - 4× a² ×( -b² )
= [ ( a²)² + ( b²)² - 2a²b² + 4a²b²
= ( a² )² + ( b² )² + 2a²b²
D = ( a² + b² )²
Quadratic Formula :
x = [ - B ± √D ]/2A
=> x = [ -(a²-b²) ± √(a²+b²)² ]/2a²
=> x = [ - a² + b² ± ( a² + b² ) ]/2a²
Therefore ,
i ) x = [-a²+b²+a²+b²]/2a²
x = 2b²/2a²
x = b²/a²
Or
ii ) x = ( -a² + b² - a² - b² )/2a²
x = -2a²/2a²
x = - 1
Therefore ,
x = b²/a² or x = -1
••••
Similar questions
English,
7 months ago
India Languages,
7 months ago
Chemistry,
7 months ago
Chemistry,
1 year ago
Math,
1 year ago