Math, asked by madduriashok999, 3 days ago

2 solve x² dy = y² + 1 dx​

Answers

Answered by chandan454380
2

Answer:

The answer is \tan^{-1}y=-\frac{1}{x}+c

Step-by-step explanation:

Given differential equation is

              x^2dy=(y^2+1)dx

Separate the variables        

                \displaystyle \Rightarrow \frac{dy}{y^2+1}=\frac{dx}{x^2}

Now integrate both sides

               \Rightarrow \displaystyle \int\frac{dy}{1+y^2}=\int x^{-2}dx\\\Rightarrow \tan^{-1}}y=\frac{x^{-2+1}}{-2+1}+c\\\Rightarrow \tan^{-1}y=-\frac{1}{x}+c

Answered by janhaviingle908
0

Answer:

hi and this example was you help

Attachments:
Similar questions