2
Answers
Answered by
0
Answer:
2cos
2
x+3sinx=0
⇒2(1−sin
2
x)+3sinx=0
⇒2(sin
2
x)−3sinx−2=0
⇒2(sin
2
x)−4sinx+sinx−2=0
⇒2sinx(sinx−2)+(sinx−2)=0
⇒(sinx−2)+(2sinx+1)=0
⇒sinx=2,sinx=−
2
1
(Not possible)
sinx=−
2
1
=−sin
6
π
=sin(π+
6
π
)
=sin
6
7π
⇒sinx=sin
6
7π
⇒x={nπ+(−1)
n
6
7π
}where n∈I
Hence, the general solution is:
x={nπ+(−1)
n
6
7π
}, n∈I
Step-by-step explanation:
Similar questions