Math, asked by rakshitha37, 9 months ago

2
.
The pair of equations x+2y+5 = 0 and -3x-6y+1 = 0 have
a) unique solution
b) exactly two solutions
c) infinitely many solutions
d) no solution​

Answers

Answered by Anonymous
13

\setlength{\unitlength}{1.6mm}\begin{picture}(30,20)\linethickness{0.1mm}\multiput(0,0)(0.5,0){2}{\line(0,-1){47}}\multiput(0,0)(0,-0.5){2}{\line(1,0){43}}\multiput(28,1)(14,0){2}{\line(0,1){4}}\multiput(28,5)(0,-4){2}{\line(1,0){14}}\footnotesize{\put(28.3,2.4){$Date:20/05/20$}}\linethickness{0.1mm}\footnotesize{\put(2,-3){$\blacksquare$\underline{\:Question}}}\footnotesize{\put(2,-3){$\blacksquare$\underline{\:Question}}}\footnotesize{\put(2,-19){$\blacksquare$\underline{\: SolutioN}}}\footnotesize{\put(2,-19){$\blacksquare$\underline{\: SolutioN}}}\footnotesize{\put(2,-6){The pair of equations x+2y+5 = 0 and }}\footnotesize{\put(2,-8){-3x-6y+1 = 0 have}}\footnotesize{\put(2,-10){a) unique solution}}\footnotesize{\put(2,-12){b) exactly two solutions}}\footnotesize{\put(2,-14){c) infinitely many solutions}}\footnotesize{\put(2,-16){d) no solution}}\footnotesize{\put(2,-22){we know that for a pair of linear equations in two}}\footnotesize{\put(2,-24){variables , }}\footnotesize{\put(8,-26){$a_1x^2+b_1x+c_1=0$}}\footnotesize{\put(8,-28){$a_2x^2+b_2x+c_2=0$}}\footnotesize{\put(2,-31){if ,   $\dfrac{a_1}{a_2}\neq\dfrac{b_1}{b_2}$( will have unique solution)}}\footnotesize{\put(2,-36){if ,   $\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}$            ( will have infinite solution)}}\footnotesize{\put(2,-40){if ,   $\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}\neq\dfrac{c_1}{c_2}$     ( will have no solution)}}\end{picture}

\setlength{\unitlength}{1.6mm}\begin{picture}(30,20)\linethickness{0.1mm}\multiput(0,0)(0.5,0){2}{\line(0,-1){47}}\footnotesize{\put(2,-2){Now Applying This fact to the above problem}}\footnotesize{\put(8,-5){x+2y+5 = 0}}\footnotesize{\put(7,-7){-3x-6y+1 = 0}}\footnotesize{\put(2,-10){$\therefore\:a_1=1\:\:\:\:\:b_1=2\:\:\:\:\:c_1=5$}}\footnotesize{\put(2,-12){$\therefore\:a_2=-3\:\:b_2=-6\:\:c_2=1$}}\footnotesize{\put(2,-17){$\dfrac{a_1}{a_2}=\dfrac{1}{-3}$}}\footnotesize{\put(2,-22){$\dfrac{b_1}{b_2}=\dfrac{2}{-6}=\dfrac{1}{-3}$}}\footnotesize{\put(2,-27){$\dfrac{c_1}{c_2}=\dfrac{2}{-6}\neq\dfrac{5}{1}$}}\footnotesize{\put(2,-32){$\therefore\:\:\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}\neq\dfrac{c_1}{c_2}$     ( will have no solution)}}\footnotesize{\put(2,-37){$\blacksquare$\underline{\:AnsweR}}}\footnotesize{\put(2,-37){$\blacksquare$\underline{\:AnsweR}}}\footnotesize{\put(2,-40){option (d) no solutions.. }}\put(2,-46){\line(1,0){40}}\end{picture}

Similar questions