Physics, asked by kumaran36, 11 months ago

2. The radius of a rotating sphere decreases by 2%
keeping the mass constant, the change in its
rotational kinetic energy ?
(1) 2% (2) 1% (3) 4% (4) 8%
171
.111​

Answers

Answered by Anonymous
26

\huge\underline\blue{\rm Answer:}

\red{\boxed{\sf Change\:in\: Rotational\: Kinetic\:energy=4percent}}

\huge\underline\blue{\rm Solution:}

\large\underline\pink{\sf Given: }

  • Radius of a rotating sphere decreases (\sf{\frac{\delta R}{R}})= 2%

\large\underline\pink{\sf To\:Find: }

  • Change in its
  • rotational kinetic energy \sf{\frac{\delta K_{rotation}}{K_{rotation}}}=?

━━━━━━━━━━━━━━━━━━━━━━━━━━

We know ,

\Large{\boxed{\sf K_{rotational}=\frac12I\omega^2}}

\large\implies{\sf \frac12×25×mR^2\omega^2}

\Large{\boxed{\sf \frac{\delta K_{Rotational}}{K_{Rotational}}=2\frac{\delta R}{R}}}

\large\implies{\sf 2×2 percent}

\large\implies{\sf 4 percent }

\red{\boxed{\sf Change\:in\: Rotational\: Kinetic\:energy=4percent}}

Similar questions