Math, asked by SangamithraK, 9 months ago

2. The square of the hypotenuse of an isosceles right angled triangle is 242 cm². What is the length of
each equal side?​

Answers

Answered by aryans01
1

Square of Hypotenuse =242cm^2

Let the equal sides be x cm.

According to pythagoras Theorem,

 {hypotenuse}^{2}  =  {base}^{2}  +  {height}^{2}  \\ 242 =  {x}^{2} +  {x}^{2}   \\  242 = 2 {x}^{2}  \\ 141 =  {x}^{2}  \\ x =  \sqrt{141}

Therefore the length of the two equal sides are √141cm .

Hope it is helpful

Answered by Anonymous
11

Given:

\\\\

Square of Hypotenuse of an isosceles triangle = 242cm^2

\\\\\\

To Find:

\\\\

Length of Perpendicular and Base of the same isosceles triangle.

\\\\\\

Answer:

\\\\

Let the perpendicular of the triangle be a.

\\

Since,

\\

In an isosceles triangle, the perpendicular and the base are equal .

\\

Therefore,

\\

Base = Perpendicular = a

\\\\

From Pythagoras Theorem,

\\

\tt(hypotenuse)^{2}  = (base)^{2}  + (perpendicular)^{2}  \\  \\\tt h^{2}={b}^{2}  + p^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ \\

In the question,\\

h^2 = 242 cm^2\\\\

Substituting the value , we get:

\\

\sf242 \:  {cm}^{2}  =  {a}^{2}  +  {a}^{2}  \\  \\ \sf242 \:  {cm}^{2}  = 2 {a}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\\sf  {a}^{2}  =  \dfrac{242}{2}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\\  \\ \sf {a}^{2}  = 121 \:  {cm}^{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\\sf a =  \sqrt{121 \:  {cm}^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf a = 11 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\

Since base and perpendicular are equal.

\\\\

Therefore, the answer is:

\\

Base = 11 cm

Perpendicular = 11 cm

Similar questions