Math, asked by shauryaverma212, 6 months ago

2. Using the given Figure, name the following angles :
(a) alternate interior angles
(b) corresponding angles
(d) angle alternate to angle 3
(e) angle corresponding to angle 4 (f) exterior angles
(g) pairs of interior angles on the same side of the transversal​

Answers

Answered by Sasanksubudhi
8

Answer:

plz follow me l will follow u back guys

Step-by-step explanation:

Let Principal be 'P'

and Rate of interest be 'R'

Time (n) = 2 years

Simple Interest (S.I) = Rs. 400

Compound Interest (C.I) = Rs. 410

\begin{gathered}\begin{gathered}S.I = \frac{P \times R \times T}{100} \\ \\ = \frac{P \times R \times T}{100} = 400 \\ \\ = \frac{PR \times 2}{100} = 400 \\ \\ = \frac{PR}{50} = 400 \\ \\ = PR = 400 \times 50 \\ = PR = 20000\end{gathered}\end{gathered}

S.I=

100

P×R×T

=

100

P×R×T

=400

=

100

PR×2

=400

=

50

PR

=400

=PR=400×50

=PR=20000

S.I=100P×R×T=100P×R×T=400=100PR×2=400=50PR=400=PR=400×50=PR=20000

\begin{gathered}\begin{gathered}C.I = P( \: \: ( {1 + \frac{R}{100} })^{n} - 1) \\ \\ = P( \: \: ( {1 + \frac{R}{100} })^{n} - 1) = 410 \\ \\ = P( \: \: ( {1 + \frac{R}{100} })^{2} - 1) = 410 \\ \\ = P( \: \: {(1)}^{2} + 2 \times 1 \times \frac{R}{100} + { (\frac{R}{100}) }^{2} - 1 ) = 410 \\ \\ = P( \: \: 1 - 1 \times \frac{R}{50} + { (\frac{R}{100}) }^{2} \: \: \: ) = 410 \\ \\ = P( \: \frac{R}{100} + \frac{ {R}^{2} }{10000} \: \: ) = 410 \\ \\ (take \: \: common \: R \: ) \\ \\ = PR ( \frac{1}{50} + \frac{R}{10000} ) = 410 \\ (put \: the \: value \: of \: PR \: = 20000) \\ \\ = 20000( \frac{1}{50} + \frac{R}{10000} ) = 410 \\ \\ = 20000( \frac{200 + R }{10000} ) = 410 \\ \\ = \frac{R + 200}{10000} = \frac{410}{20000 } \\ \\ = \frac{R + 200}{10000} = \frac{41}{2000 } \\ \\ = R + 200 = \frac{41}{2000} \times 10000 \\ \\ = R + 200 = 41 \times 5 \\ = R + 200 = 205 \\ = R = 205 - 200 \\ = R = 5\end{gathered}\end{gathered}

C.I=P((1+

100

R

)

n

−1)

=P((1+

100

R

)

n

−1)=410

=P((1+

100

R

)

2

−1)=410

=P((1)

2

+2×1×

100

R

+(

100

R

)

2

−1)=410

=P(1−1×

50

R

+(

100

R

)

2

)=410

=P(

100

R

+

10000

R

2

)=410

(takecommonR)

=PR(

50

1

+

10000

R

)=410

(putthevalueofPR=20000)

=20000(

50

1

+

10000

R

)=410

=20000(

10000

200+R

)=410

=

10000

R+200

=

20000

410

=

10000

R+200

=

2000

41

=R+200=

2000

41

×10000

=R+200=41×5

=R+200=205

=R=205−200

=R=5

C.I=P((1+100R)n−1)=P((1+100R)n−1)=410=P((1+100R)2−1)=410=P((1)2+2×1×100R+(100R)2−1)=410=P(1−1×50R+(100R)2)=410=P(100R+10000R2)=410(takecommonR)=PR(501+10000R)=410(putthevalueofPR=20000)=20000(501+10000R)=410=20000(10000200+R)=410=10000R+200=20000410=10000R+200=200041=R+200=200041×10000=R+200=41×5=R+200=205=R=205−200=R=5

Rate of interest = 5%

Now Principal,

as PR

\begin{gathered}\begin{gathered}Now Principal, \\ as P \times R = 20000 \\ = > P \times 5 = 20000 \\ = > P = \frac{20000}{5} \\ \\ = > P = 4000\end{gathered}\end{gathered}

NowPrincipal,

asP×R=20000

=>P×5=20000

=>P=

5

20000

=>P=4000

NowPrincipal,asP×R=20000=>P×5=20000=>P=520000=>P=4000

Principal = Rs. 4000

Q. (7)

A man invested Rs. 1000 for 3 years at 11% Simple Interest .....................(CASE 1)

Principal (P) = Rs. 1000

Rate of interest (R) = 11% per annum

Time (n) = 3 years

\begin{gathered}\begin{gathered}S.I = \frac{P \times R \times T}{100} \\ \\ = \frac{1000 \times 11 \times 3}{100} \\ \\ = 10 \times 11 \times 3 \\ = 330\end{gathered}\end{gathered}

S.I=

100

P×R×T

=

100

1000×11×3

=10×11×3

=330

S.I=100P×R×T=1001000×11×3=10×11×3=330

S.I = Rs. 330

He also invested Rs. 1000 at 10% compound interest per annum compounded annually for 3 years .........................( CASE 2 )

Principal (P) = Rs. 1000

Rate of interest (R) = 10% per annum

Time (n) = 3 years

\begin{gathered}\begin{gathered}C.I = P( \: \: {(1 + \frac{R}{100}) }^{n} - 1) \\ \\ = 1000( \: \: {(1 + \frac{10}{100}) }^{3} - 1) \\ \\ = 1000( \: \: {(1 + \frac{1}{10}) }^{3} - 1) \\ \\ = 1000( \: \: { (\frac{10 + 1}{10} )}^{3} - 1 ) \\ \\ = 1000( \: { (\frac{11}{10}) }^{3} - 1 ) \\ \\ = 1000 \times (\frac{1331}{1000} - 1) \\ \\ = 1000 \times ( \frac{1331 - 1000}{1000} ) \\ \\ = 1000 \times \frac{331}{1000} \\ \\ = 331\end{gathered}\end{gathered}

C.I=P((1+

100

R

)

n

−1)

=1000((1+

100

10

)

3

−1)

=1000((1+

10

1

)

3

−1)

=1000((

10

10+1

)

3

−1)

=1000((

10

11

)

3

−1)

=1000×(

1000

1331

−1)

=1000×(

1000

1331−1000

)

=1000×

1000

331

=331

Answered by Kanao
3

Answer:

the figure is not provided

Similar questions