Math, asked by esonamisokuhlesinamp, 4 months ago

2 ^ x - 1 / 2 ^ x + 1​

Answers

Answered by singhamanpratap0249
2

Answer:

 {2}^{x - 1}  \div  {2}^{x + 1}

 {2}^{x - 1 - x - 1}

 {2}^{ - 2}

Answered by MrImpeccable
19

{\huge{\underline{\boxed{\red{\mathcal{Answer}}}}}}

To Simplify:

  • \dfrac{2^{x-1}}{2^{x+1}}

Solution:

:\implies \dfrac{2^{x-1}}{2^{x+1}} \\\\:\implies 2^{(x-1)-(x+1)} \\\\:\implies 2^{x-1-x-1} \\\\:\implies 2^{-2} \\\\:\implies \dfrac{1}{2^2} \\\\\bf{:\implies \dfrac{1}{4}}

Formula used:

  •  \dfrac{a^m}{a^n} = a^{m-n} \\

Learn More:

 \begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Hope it helps..

Similar questions