Math, asked by harshavardhan270412, 5 months ago

2/x + 12/y = 1/2

4/x +12/y = 13/20​

Answers

Answered by aryan073
3

Given

The Given linear equations are :

 \\  \bullet \bf \:  \frac{2}{x}  +  \frac{12}{y}  =  \frac{1}{2}  \:  \: ...(1)

  \\ \bullet \bf \:  \frac{4}{x}  +  \frac{12}{y}  =  \frac{13}{20}  \:  \: ...(2)

To Find :

• The value of x and y =?

Solution :

 \\  \bullet \bf \:  \frac{2}{x}  +  \frac{12}{y}  =  \frac{1}{2}  \:  \: ...(1)

\\ \star\pink{\underline{\sf{Getting \: reciprocal \: of \: equation \: (1) ,\: we \: get \:}}}

  \\ \implies \sf \:  \frac{x}{2}  +  \frac{y}{12}  = 2

\\ \star\pink{\underline{\sf{On \: cross \: multiplication \: of \: equation (1) \: ,we \: get }}}

  \\ \implies \sf \:  \frac{x \times 6}{2 \times 6}  +  \frac{y}{12}  = 2 \\  \\  \implies \sf \:  \frac{6x + y}{12}  = 2 \\  \\  \implies \sf \: 6x + y = 24 \\  \\  \:  \:  \:  \:  \:  \:  \implies \boxed{ \sf{6x + y = 24}} \:  \: ...(3)

  \\  \bullet \bf \:  \frac{4}{x}  +  \frac{12}{y}  =  \frac{13}{20}

\\ \star\pink{\underline{\sf{Getting \: reciprocal  \: of \: equation (2) \: , we \: get }}}

 \\  \implies \sf \:  \frac{x}{4}  +  \frac{y}{12}  =  \frac{20}{13}

\\ \star\pink{\underline{\sf{On \: cross \: multiplication  \: of \: equation (2) , \: we \: get }}}

  \\ \implies \sf \:  \frac{x \times 3}{4 \times 3}  +  \frac{y}{12}  =  \frac{20}{13}  \\  \\  \implies \sf \:  \frac{3x + y}{12}  =  \frac{20}{13}  \\  \\  \implies \sf \: 13(3x + y) = 20 \times 12 \\  \\  \implies \sf \: 39x + 13y = 240 \\  \\  \implies \boxed{ \sf{39x + 13y = 240}} \: ....(4)

\\ \star\pink{\underline{\sf{Multiplying \: in \: equation (3) \: by \: 13 , \: we \: get}}}

 \implies \boxed{ \sf{\:78 x + 13y = 312}} \:  \: ...(5)

\\ \star\pink{\underline{\sf{Subtracting \: equations (5) \: and \: (4)}}}

 \implies \sf78x +  \cancel{13y }= 312 \:  \: ..(5)

 \ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: 39x +  \cancel{13y} = 240...(4)

____________________________

 \implies \sf \: 39x = 72 \\  \\ \implies \sf \: x =  \frac{72}{39}  \\  \\  \implies \sf \: x =  \frac{24}{13}  \\  \\  \implies \boxed{ \sf{x =  \frac{24}{13} }}

\\ \star\pink{\underline{\sf{Substitute \: the \: value \: x \: in \: equation (1), we \: get}}}

  \\ \implies \sf \: 6x + y = 24 \\  \\ \implies \sf \: 6 \bigg( \frac{24}{13}  \bigg) + y = 24 \\  \\  \implies \sf \: 6 \times 24 + 13y = 24 \times 13 \\  \\  \implies \sf \: 13y = 24 \times 13 - 6 \times 24 \\  \\  \implies \sf \: 13y = 24(13 - 6) \\  \\  \implies \sf \: 13y = 24 \times 7 \\   \\  \implies \sf \: 13y = 168 \\  \\  \implies \sf \: y =  \frac{168}{13}  \\  \\  \implies \boxed{ \sf{ y =  \frac{168}{13} }}

The value of x and y is :

 \red \bigstar \boxed{ \sf{x =  \frac{24}{13}  \:  \: and \:  \: y =  \frac{168}{13} }}

Similar questions