Math, asked by Mrigthegeek, 1 year ago

2^x+3^y=17;2^x+2-3^y-1=5

Answers

Answered by NainaRamroop
2

Given:

2^{x} + 3^{y} = 17\\\\            → I

2^{x+2}  - 3^{y-1} =5       → II

To Find:

x and y

Solution:

We must recall the following laws of indices to solve this question,

  1. x^{m} * x^{n}  = x^{m+n}
  2. x^{m} / x^{n}  = x^{m-n}

Now let,

2^{x} ⇒ A

3^{y} ⇒ B

Equation I : 2^{x} + 3^{y} = 17\\\\

                   Therefore,

                   A + B = 17

Use the above laws to simplify equation II

2^{x+2}  - 3^{y-1} =5

We get:

2^{x+2} = 2^{x} * 2^{2}\\3^{y-1} = 3^{y} /  3^{1}

(2^{x} * 2^{2}) - (3^{y}  /  3^{1} ) = 5

Replace  3^{y} ⇒ B

               2^{x} ⇒ A

(A*2^{2}) - (B/3^{1}) = 5

4A - \frac{1}{3}B = 5

We have now acquired two new equations:

A+B=17                 →       Eqn. a

4A - \frac{1}{3}B = 5               →       Eqn. b

Use the method of substitution to find the values of the A & B variables.

(here, we are making A the subject from eqn a to substitute into eqn b)

A+B=17

A=B-17       →  III

III in eqn b.

4(B-17) - \frac{1}{3}B = 5\\

Solve;

4(17-B) - \frac{1}{3}B = 5\\\\3[4(17-B) - \frac{1}{3}B] = (5)3\\\\12(17-B) - B = 15\\\\204 -12B -B=15\\\\204-15=12B+B\\\\189 = 13B\\\\B = 189/13

Put the value of B in eqn a.

A +\frac{189}{13} =17\\\\A=17 - \frac{189}{13}\\\\A= \frac{32}{13}

Finally use the logarithm function to find x and y;

2^{x} ⇒ A ⇒ \frac{32}{13}

3^{y} ⇒ B ⇒ \frac{189}{13}

Follow these logarithmic rules:

  1. logₐ x^{m} = m logₐ x
  2. logₐ \frac{m}{n} = logₐ m - logₐ n
  3. logₐ mn = logₐ m + logₐ n

x log2 = log \frac{32}{13}

x log2 = log 32 - log 13

x = (log 32 - log 13) / log 2

y log3 = log \frac{189}{13}

y log3 = log 189 - log 13

y = (log 189 - log 13) / log 3

Hence, x = (log 32 - log 13) / log 2 and y = (log 189 - log 13) / log 3

Answered by rakeshsingh52
1

Given,

2^{x}+3^{y}=17 and 2^{x+2}-3^{y-1}=5

We have to find the values of x and y.

Formulas:

x^{m}*x^{n}=x^{m+n}

x^{m}/x^{n}=x^{m-n}

Let, 2^{x}=A and 3^{y}=B

The equation 2^{x}+3^{y}=17 becomes A+B=17

A+B=17 .......(1)

Use the above formulas, to simplify the equation 2^{x+2}-3^{y-1}=5

2^{x+2}=2^{x}*2^{2}

3^{y-1}=\frac{3^{y} }{3^{1} }

Substitute the above values in 2^{x+2}-3^{y-1}=5

2^{x}*2^{2}-\frac{3^{y} }{3^{1}}=5

Replace 2^{x}=A and 3^{y}=B

4A-\frac{B}{3}=5

12A-B=15 .....(2)

Adding the both equations, we get

A+B+12A-B=17+15

13A=32

A=\frac{32}{13}

Now substitute A=\frac{32}{13} in equation (1),we get

\frac{32}{13}+B=17

32+13B=221

B=\frac{189}{13}

We know that,

2^{x}=A

3^{y}=B

Now, we can use the logarithm functions to find the values of x and y.

log2^{x}=x log 2

xlog2=log\frac{32}{13}

x=\frac{log32-log13}{log2}

log3^{y}=ylog3

ylog3=log\frac{189}{13}

y=\frac{log189-log13}{log3}

Therefore, the values of x and y are respectively \frac{log32-log13}{log2} and \frac{log189-log13}{log3}.

#SPJ2

Similar questions