Math, asked by shahsiddh9697, 1 year ago

2^x=3^y=6^-z=k.prove that 1/x+1/y=1/z?

Answers

Answered by Anonymous
1

Given \:  \: Question \:  \: Is \:  \\  \\ 2 {}^{x}  = 3 {}^{y}  = 6 {}^{ - z}  \\  \\ Answer \:  \\  \\ let \:  \:  \:  \: 2 {}^{x}  = 3 {}^{y}  = 6 {}^{ - z}  \:  \:  = k \\  \\ 2 {}^{x}  = k \:  \:  \:  \: 3 {}^{y}  = k \:  \:  \:  \:  \: and \:  \:  \: 6 {}^{ - z}  = k \\  \\ 2 = k {}^{ \frac{1}{x} }  \:  \: ...Equation \:  \: i \: \\  \\  3 = k {}^{ \frac{1}{y} }  \:  \: ...Equation \:  \:  \: ii \\  \\ 6 = k {}^{ \frac{ - 1}{z} }  \:  \:  \: ... \: Equation \:  \:  \: iii \\  \\  \\ 6 = k { }^{ \frac{ - 1}{z} }  \\  \\ 2 \times 3 = k {}^{ \frac{ - 1}{z} }   \:  \:  \:  \:  \: from \: Equation \:  i \: and \:ii  \\  \\ k {}^{ \frac{1}{x} }  \times k {}^{ \frac{1}{y} }  = k {}^{ \frac{ - 1}{z} }  \\  \\ k {}^{( \frac{1}{x}  +  \frac{1}{y}) }  = k {}^{ \frac{ - 1}{z} }  \\  \\ Now \:  \: compare \: powers \: of \: k \: we \: have \\  \\  \frac{1}{x}  +  \frac{1}{y}  =   \frac{ - 1}{z}  \:  \:  \: Hence \: proved \:  \\  \\ Note \:  \\  \\ if \:  \:  \: x {}^{n}  = k \\  \\ then \:  \:  \: x = k {}^{ \frac{1}{n} }

Similar questions