Math, asked by sarassaleen121pcpxoz, 1 year ago

2^x=4^y=8^z and xyz=288 then find 1/2x +1/4y+1/8z

Attachments:

Answers

Answered by DelcieRiveria
96

Answer:

The correct option is D.

Step-by-step explanation:

It is given that

2^x=4^y=8^z

It can be written as

2^x=2^{2y}=2^{3z}

x=2y=3z                   .... (1)

It is also given that

xyz=288

(3z)\times (\frac{3z}{2})\times z=288

(9z^3)=576

Divide both sides by 9.

z^3=64

z=4

x=3z=3\times 4=12

y=\frac{3z}{2}=\frac{3\times 4}{2}=6

We have to find the value of

\frac{1}{2x}+\frac{1}{4y}+\frac{1}{8z}

Substitute x=12, y=6 adn z=4.

\frac{1}{2(12)}+\frac{1}{4(6)}+\frac{1}{8(4)}

\frac{1}{24}+\frac{1}{24}+\frac{1}{32}

\frac{4+4+3}{96}=\frac{11}{96}

Therefore the correct option is D.

Answered by mindfulmaisel
20

"Answer: 8

Given       { 2 }^{ x }\quad =\quad { 4 }^{ y }\quad =\quad { 8 }^{ z }{ 2 }^{ x }\quad =\quad { 2 }^{ (2y) }\quad =\quad { 2 }^{ (3z) }

If basics are equal then their powers are also equal

       x = 2y = 3z

xyz=288

x\times (\frac { x }{ 2 } )\times (\frac { x }{ 3 } )\quad =\quad 238 (x^3)/6 = 288{ x }^{ 3 }\quad =\quad 288\times 6\quad =\quad 1728

       x= 12

y\quad =\quad \frac { x }{ 2 } \quad =\quad \frac { 12 }{ 2 } \quad =\quad 6

z\quad =\quad \frac { x }{ 3 } \quad =\quad \frac { 12 }{ 3 } \quad =\quad 4

\frac { 1 }{ 2 } x+\frac { 1 }{ 4 } y+\frac { 1 }{ 8 } z\quad =\quad (\frac { 1 }{ 2 } )\times 12+(\frac { 1 }{ 4 } )\times 6+(\frac { 1 }{ 8 } )\times 4\quad =\quad 6+(\frac { 3 }{ 2 } )+(\frac { 1 }{ 2 } )\quad =\quad 8"

Similar questions