Math, asked by nikitabhatia395, 1 year ago

2 zeroes of polynomial f(x) is such that the sum of product of zeroes is -6. if f(x)= x4+x3-12x2-6x+36. then find all the zeroes. Pls help me out with this question!!​


7777777RAM: hiiii

Answers

Answered by siddhartharao77
22

Step-by-step explanation:

Let the 2 zeroes of the polynomial be α,β.

Given, f(x) = x⁴ + x³ - 12x² - 6x + 36.

Given that Sum of zeroes is 0 and Product is -6.

α + β = 0 and αβ = -6

The Equation thus formed is:

x² - (Sum of zeroes)x + Product of zeroes

⇒ x² - 6

∴ x² - 6 is a factor of f(x).

On dividing f(x) by x² - 6, we can find out the factors.

x² - 6) x⁴ + x³ - 12x² - 6x + 36 (x² + x - 6

          x⁴         - 6x²

           -----------------------------------

                    x³ - 6x² - 6x

                    x³           - 6x

             -----------------------------------

                            -6x²           +  36

                             -6x²           +  36

                 ------------------------------------

                                                  0

∴ f(x) = 0

⇒ x⁴ + x³ - 12x² - 6x + 36 = 0

⇒ (x² - 6)(x² + x - 6) = 0

⇒ (x² - (√6)²)(x² + 3x - 2x - 6) = 0

⇒ (x + √6)(x - √6)[x(x + 3) - 2(x + 3)] = 0

⇒ (x + √6)(x - √6)(x - 2)(x + 3) = 0

⇒ x = -√6, √6, 2, -3

Therefore, Zeroes are : √6, -√6, 2, -3

Hope it helps!


nikitabhatia395: thank you sooo much
siddhartharao77: Welcome
Anonymous: Wonderful ❤
siddhartharao77: Thank you friend :)
Answered by saivivek16
6

Answer:

Step-by-step explanation:

x⁴ + x³ - 12x² - 6x + 36 = 0

(x² - 6)(x² + x - 6) = 0

(x² - (√6)²)(x² + 3x - 2x - 6) = 0

(x + √6)(x - √6){x(x + 3) - 2(x + 3)}=0

[(x + √6)(x - √6)(x - 2)(x + 3)] =0

One of the zero :-

x = -√6

Another zero:-

X=√6

Another zero:-

X=2

Another zero:-

X=-2

Hence you got four zeros for the given polynomial.

Hope it will help you with

✌️Sai

Similar questions