Math, asked by kbps, 1 year ago

√20+√11/√20-√11 simplify

Answers

Answered by DaIncredible
19
Hey friend,
Here is the answer you were looking for:
 \frac{ \sqrt{20}  +  \sqrt{11} }{ \sqrt{20}  -  \sqrt{11} }  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{ \sqrt{20}  +  \sqrt{11} }{ \sqrt{20}  -  \sqrt{11} }  \times  \frac{ \sqrt{20}  +  \sqrt{11} }{ \sqrt{20}  +  \sqrt{11} }  \\   \\ using \: the \: identities \\  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{ {( \sqrt{20}) }^{2}  +  {( \sqrt{11} )}^{2}  + 2 \times  \sqrt{20} \times  \sqrt{11}  }{ {( \sqrt{20} )}^{2}  -  {( \sqrt{11} })^{2} }  \\  \\  =  \frac{20 + 11 + 2 \sqrt{220} }{20 - 11}  \\  \\  =  \frac{31 + 2 \sqrt{2 \times 2 \times 5 \times 11} }{9}  \\  \\  =  \frac{3 + 2 \times 2 \sqrt{55} }{9}  \\  \\  =  \frac{3 + 4 \sqrt{55} }{9}

Hope this helps!!!!

@Mahak24

Thanks...
☺☺
Similar questions