20. If A If A={x/x^2 =-1, xe R}, then n(p(A))
=
Answers
Given, f(x)=x
Given, f(x)=x 2
Given, f(x)=x 2
Given, f(x)=x 2 ∴
Given, f(x)=x 2 ∴ (1.1−1)
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1)
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1)
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) =
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1)
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1)
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1) 2
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1) 2
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1) 2
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1) 2 =
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1) 2 = 0.1
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1) 2 = 0.11.21−1
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1) 2 = 0.11.21−1
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1) 2 = 0.11.21−1 =
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1) 2 = 0.11.21−1 = 0.1
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1) 2 = 0.11.21−1 = 0.10.21
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1) 2 = 0.11.21−1 = 0.10.21
Given, f(x)=x 2 ∴ (1.1−1)f(1.1)−f(1) = (1.1−1)(1.1) 2 −(1) 2 = 0.11.21−1 = 0.10.21 =2.1