20. If tan 0 = cot (30° + n), find the value of 0.
Answers
Answered by
3
ANSWER:
Given
tanθ = cot(30° + θ)
We know that
cotθ = tan(90° - θ)
tanθ = tan[90° - (30° + θ)]
tan = tan (60° - θ)
θ = 60° - θ
2θ = 60°
θ = 60°/2 = 30°
MORE INFORMATION:
sin(90° - θ) = cosθ
cos(90° - θ) = sinθ
tan(90° - θ) = - cotθ
cosec(90° - θ) = secθ
sec(90° - θ) = cosecθ
cot(90° - θ) = tanθ
Similar questions