Math, asked by shushith7545, 1 year ago

20. If the radii of the ends of a buckets are 5cm and 15 cm and 24cm high, find its surface area. (Use pi =3.14) (set 2)

Answers

Answered by chips4475
0
Formula is 2πrh+2πr(squared)
SA(5cm by 24 cm bucket)= 911.06
SA( 15cm by 24cm bucket)= 3675.66
Please mark this as the brainliest if this is the best answer! Thanks!
Answered by Anonymous
138

Given :-

  • Radius of the top of bucket = 15 cm
  • Radius of the bottom of bucket = 5 cm
  • Height of the bucket = 24 cm.

To Find :-

  • Surface area of the bucket.

Solution :-

  • Here the bucket is in shape of a frustum.Let us find the slant height first!

\sf\red{\:  \:  \:  \:  \:  \:  \:   :\implies Slant\: Height= \sqrt{(R-r)^2+h^2}}\\

\:  \:  \:  \:  \:  \:  \:   : \implies\sf Slant\: Height_{Bucket}= \sqrt{15-5)^2+(24)^2}\\

 \:  \:  \:  \:  \:  \:  \:   : \implies\sf Slant\: Height_{Bucket}= \sqrt{(10)^2+(24)^2}\\

\:  \:  \:  \:  \:  \:  \:   :  \implies\sf Slant\: Height_{Bucket}= \sqrt{100+576}\\

\:  \:  \:  \:  \:  \:  \:   : \implies\sf Slant\: Height_{Bucket}= \sqrt{676}\\

\:  \:  \:  \:  \:  \:  \:   : \implies{\boxed{\pink{\sf\ Slant\: Height_{Bucket}= 26 cm}}}\\\\

\therefore\:\underline{\textsf{Slant height of the bucket  is   \textbf{26 cm }}}\\\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\red{\:  \:  \:  \:  \:  \:  \:   : \implies\sf\ S.A= π\times (R+r)\times l}\\

\:  \:  \:  \:  \:  \:  \:   : \implies\sf\ S.A_{Bucket}= 3.14\times (15+5)\times 26\\

\:  \:  \:  \:  \:  \:  \:   : \implies\sf\ S.A_{Bucket}=81.64\times 20\\

 \:  \:  \:  \:  \:  \:  \:   : \implies\sf\ S.A_{Bucket}= 1634.28\\

\:  \:  \:  \:  \:  \:  \:   : \implies{\boxed{\pink{\sf\ Surface\ Area_{Bucket}= 1634.28 cm^2}}}\\\\

\therefore\:\underline{\textsf{Surface area  of the bucket  is   \textbf{ 1634.28 cm²}}}\\\\

Similar questions