20 POINTS
_______________
Give the Proof for:
tanA + tanB + tanC = tanAtanBtanC
in a triangle.
Answers
Hey mate!
Hey mate! Here's the answer to your question...
--------------------------------------------------------
We have to prove that tan A + tan B + tan C = tan A*tan B*tan C for any non-right angle triangle.
For any triangle the sum of the angles is equal to 180 degrees. If we take a triangle ABC, A + B + C = 180 degrees.
A + B + C = 180 or A + B = 180 - C
tan (A + B) = tan (180 - C) = tan C
=> (tan A + tan B)/(1 - tan A*tan B) = tan C
=> tan A + tan B = tan C - tan A*tan B*tan C
=> tan A + tan B + tan C = tan A*tan B*tan C
This proves that tan A + tan B + tan C = tan A*tan B*tan C
--------------------------------------------------------
Don't forget to mark my answer as brainliest if it helped you...
Answer:
hii here is your answer
Step-by-step explanation:
We have to prove that tan A + tan B + tan C = tan A*tan B*tan C for any non-right angle triangle. For any triangle the sum of the angles is equal to 180 degrees. If we take a triangle ABC, A + B + C = 180 degrees.