Math, asked by TereMaaKeKangan, 4 months ago

200 logs are stacked in the following manner , 20 logs in the bottom row, 19 in the next row , 18 in the next to it and so on , In how may rows are the 200 logs placed and how many logs are in the top now ?​

Answers

Answered by Anonymous
5

 \\ \large\underline{ \underline{ \sf{ \red{given:} }}}  \\  \\

  • There are total 200 logs.

  • 20 logs in bottom row , 19 in the next row , 18 in the next and do on.

 \\  \\ \large\underline{ \underline{ \sf{ \red{to \: find:} }}}  \\  \\

  • Total number of rows in which 200 logs are placed.

  • Number of logs present in top row.

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

Total number of logs is 200.

 \\   \bigstar \boxed{ \bf \: s_{n}   =  \frac{n}{2}(2a + (n - 1)d } \\

We know ,

  • s(n) = 200

  • a = 20

  • d = 19-20 = -1

Putting values , we get ,

 \\  \sf \: 200 =  \frac{n}{2}  \{2(20) + (n - 1)( - 1) \} \\  \\  \sf \: 200 =  \frac{n}{2} (40 - n + 1) \\  \\  \sf \: 200 \times 2 = n(41 -  n) \\  \\  \sf \: 400 = 41n -  {n}^{2}  \\  \\  \sf \:  {n}^{2}  - 41n + 400 = 0 \\  \\  \sf \:  {n}^{2}  - 25n - 16n + 400 = 0 \\  \\  \sf \: n(n - 25) - 16(n - 25) = 0 \\  \\  \sf \: (n - 16)(n - 25) = 0 \\  \\  \sf \: (n - 16) = 0 \:  \:  \:  \:  \: or \:  \:  \:  \:  \: (n - 25) = 0 \\  \\  \sf \: n = 16 \:  \:  \:  \:  \:  \:  \: or \:  \:  \:  \:  \:  \: n = 25 \\  \\

Hence , number of rows are 16 or 25.

___________________

___________________

We will find number of logs in both case.

ㅤㅤㅤㅤㅤㅤㅤㅤ

★ a(n) = a + (n-1)d

ㅤㅤㅤㅤㅤㅤㅤㅤ

For n = 16 ,

ㅤㅤㅤㅤㅤㅤㅤㅤ

→ a(16) = a + 15d

ㅤㅤㅤㅤㅤㅤㅤㅤ

→ a(16) = 20 + 15(-1)

ㅤㅤㅤㅤㅤㅤㅤㅤ

→ a(16) = 20-15

ㅤㅤㅤㅤㅤㅤㅤㅤ

→ a(16) = 5

_____________________

_____________________

For n = 25 ,

ㅤㅤㅤㅤㅤㅤㅤㅤ

→ a(25) = a + (24d)

ㅤㅤㅤㅤㅤㅤㅤㅤ

→ a(25) = 20 + 24(-1)

ㅤㅤㅤㅤㅤㅤㅤㅤ

→ a(25) = 20-24

ㅤㅤㅤㅤㅤㅤㅤㅤ

→ a(25) = -4

ㅤㅤㅤㅤㅤㅤㅤㅤ

Negative value is not possible .

ㅤㅤㅤㅤㅤㅤㅤㅤ

Hence , Total number of rows is 16 and number of logs in top row is 5.

Similar questions