Math, asked by anishajoseph18, 4 days ago

21. How much percent more than the cost price should a
shopkeeper mark his goods, so that after allowing a
discount of 12.5% he should have a gain of 5% on
his outlay?​

Answers

Answered by mathdude500
12

\large\underline{\sf{Solution-}}

Let assume that,

Marked Price of goods be Rs x

Discount % = 12.5 %

We know,

\rm \: Selling\:Price = \dfrac{(100 - Discount\%) \times Marked\:Price}{100}  \\

So, on substituting the values, we get

\rm \: Selling\:Price = \dfrac{(100 - 12.5) \times x}{100}  \\

\rm \: Selling\:Price = \dfrac{87.5 \times x}{100}  \\

\rm \: Selling\:Price = \dfrac{875 x}{1000} -  -  - (1)  \\

Now, we have

\rm \: Selling\:Price = \dfrac{875 x}{1000}  \\

\rm \: gain\% \:  =  \: 5\% \\

We know,

\rm \: Selling\:Price = \dfrac{(100 + gain\%) \times Cost\:Price}{100} \\

So, on substituting the values, we get

\rm \: \dfrac{875x}{1000}  = \dfrac{(100 + 5) \times Cost\:Price}{100}

\rm \: \dfrac{175x}{2}  = 105 \times Cost\:Price

\rm \: \dfrac{35x}{2}  = 21 \times Cost\:Price

\rm \: \dfrac{5x}{2}  = 3\times Cost\:Price

\rm\implies \:Cost\:Price = \dfrac{5}{6}x \\

Now,

We have

\rm \:  \:Cost\:Price = \dfrac{5}{6}x \\

\rm \:  Marked\:Price = x \\

So, percentage of Market Price above the Cost price is

\rm \:  =  \: \dfrac{Marked\:Price - Cost\:Price}{Cost\:Price} \times 100\% \\

\rm \:  =  \: \dfrac{x - \dfrac{5x}{6} }{\dfrac{5x}{6} } \times 100\% \\

\rm \:  =  \: \dfrac{ \dfrac{6x - 5x}{6} }{\dfrac{5x}{6} } \times 100\% \\

\rm \:  =  \: \dfrac{ \dfrac{x}{6} }{\dfrac{5x}{6} } \times 100\% \\

\rm \:  =  \: \dfrac{1}{5}  \times 100\% \\

\rm \:  =  \: 20\% \\

Hence,

20 % more than the cost price should a shopkeeper marked his goods, so that after allowing a discount of 12.5% he have a gain of 5% on his outlay.

\rule{190pt}{2pt}

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{Gain = \sf S.P. \: – \: C.P.} \\ \\ \bigstar \:\bf{Loss = \sf C.P. \: – \: S.P.} \\ \\ \bigstar \: \bf{Gain \: \% = \sf \Bigg( \dfrac{Gain}{C.P.} \times 100 \Bigg)\%} \\ \\ \bigstar \: \bf{Loss \: \% = \sf \Bigg( \dfrac{Loss}{C.P.} \times 100 \Bigg )\%} \\ \\ \\ \bigstar \: \bf{S.P. = \sf\dfrac{(100+Gain\%) or(100-Loss\%)}{100} \times C.P.} \\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions