Math, asked by ankitakumarinepura, 1 year ago

22,22=1
and
.7.(Or) Find the area between the ellipses​

Answers

Answered by abhaytamang111
0

Answer:

The area of the smaller region by the ellipse \dfrac {x^2}{9}+\dfrac {y^2}{4}=1

9

x

2

+

4

y

2

=1 and the line \dfrac {x}{3}+\dfrac {y}{2}=1

3

x

+

2

y

=1 represented by the shaded region BCABBCAB

\therefore Area\ BCAB = Area\ (OBCAO) - Area\ (OBAO)∴Area BCAB=Area (OBCAO)−Area (OBAO)

=\displaystyle \int_{0}^{3}2\sqrt {1-\dfrac {x^2}{9}}dx-\int_{0}^{3}2\left (1-\dfrac {x}{3}\right )dx=∫

0

3

2

1−

9

x

2

dx−∫

0

3

2(1−

3

x

)dx

=\dfrac {2}{3}\left [\displaystyle \int_{0}^{3}\sqrt {9-x^2}dx\right ]-\dfrac {2}{3}\displaystyle \int_{0}^{3}(3-x)dx=

3

2

[∫

0

3

9−x

2

dx]−

3

2

0

3

(3−x)dx

=\dfrac {2}{3}\left [\dfrac {x}{2}\sqrt {9-x^2}+\dfrac {9}{2}\sin^{-1}\dfrac {x}{3}\right ]_{0}^{3}-\dfrac {2}{3}\left [3x-\dfrac {x^2}{2}\right ]_{0}^{3}=

3

2

[

2

x

9−x

2

+

2

9

sin

−1

3

x

]

0

3

3

2

[3x−

2

x

2

]

0

3

=\dfrac {2}{3}\left [\dfrac {9}{2}\left (\dfrac {\pi}{2}\right )\right ]-\dfrac {2}{3}\left [9-\dfrac {9}{2}\right ]=

3

2

[

2

9

(

2

π

)]−

3

2

[9−

2

9

]

=\dfrac {2}{3}\left [\dfrac {9\pi}{4}-\dfrac {9}{2}\right ]=

3

2

[

4

2

9

]

=\dfrac {2}{3}\times \dfrac {9}{4}(\pi-2)=

3

2

×

4

9

(π−2)

=\dfrac {3}{2}(\pi-2)=

2

3

(π−2) sq. units

Similar questions