Math, asked by Prrawat426, 9 months ago

22. Form a quadratic polynomial whose zeros are 3+ √2 and 3-√2.​

Answers

Answered by Anonymous
2

   \green{ \huge{\sf \underline{ \fbox{ \: Solution : \:  \: }}}}

Given ,

The zeores of quadratic equation are 3 + √2 and 3 - √2

So ,

 \star \:  \sf Sum \:  of \:  zeroes = ( 3 +  \sqrt{2} ) + (3 - \sqrt{2} )   \\  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf= 6 \\   \sf \star \: </p><p>Product  \: of \:  zeroes =  ( 3 +  \sqrt{2} ) (3 -  \sqrt{2} )  \\ \sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:   \sf= {(3)}^{2} -  {( \sqrt{2} )}^{2} \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \:    \:  \sf= 9 - 2 \\  \sf  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \:  \:  \:  \:  \:  \:  \:  \:   \: \sf  = 7

We know that , the quadratic equation is given by

 \mathtt{ \large \purple{ \fbox{ {x}^{2}  - (sum \: of \: zeroes)x + (product \: of \: zeroes) = 0}}}

Substitute the known values , we obtain

 \sf \hookrightarrow {x}^{2}  - 6x + 7 = 0

Hence , the required quadratic polynomial is x² - 6x + 7

Similar questions