㏒23∧-3 = ?
without using table or calculator
Answers
Answered by
0
log23^-3
= -3log23
{logaⁿ = nloga}
20 < 23 < 25
Take logarithms for all,
log20 < log23 < log25
log 2×10 < log 23 < log 5×5
log 2 + log 10 < log 23 < log 5²
log 2 + 1 < log 23 < 2log5
We know that,
log 2 = 0.3031
log5 = 0.6989
Substitute these values:-
0.3031+1 < log 23 < 2(0.6989)
1.3031 < log 23 < 1.3978
Multiply with -3 so as to find log 23^-3
-3(1.3031) > -3log23 > -3(1.3978)
-3.9093 > -3log23 > -4.1934
-4.1934 < -3log23 < -3.9093
-4.1934 < log(23)^-3 < -3.9093
Now,
log 23^-3 = average of -4.1934 and -3.9093
log 23^-3 = (-4.1934+(-3.9093))/2
→ = (-4.1934-3.9093)/2
→ = -8.1027/2
→ = -4.05135
Approximately, log 23^-3 = -4
Hope it helps
= -3log23
{logaⁿ = nloga}
20 < 23 < 25
Take logarithms for all,
log20 < log23 < log25
log 2×10 < log 23 < log 5×5
log 2 + log 10 < log 23 < log 5²
log 2 + 1 < log 23 < 2log5
We know that,
log 2 = 0.3031
log5 = 0.6989
Substitute these values:-
0.3031+1 < log 23 < 2(0.6989)
1.3031 < log 23 < 1.3978
Multiply with -3 so as to find log 23^-3
-3(1.3031) > -3log23 > -3(1.3978)
-3.9093 > -3log23 > -4.1934
-4.1934 < -3log23 < -3.9093
-4.1934 < log(23)^-3 < -3.9093
Now,
log 23^-3 = average of -4.1934 and -3.9093
log 23^-3 = (-4.1934+(-3.9093))/2
→ = (-4.1934-3.9093)/2
→ = -8.1027/2
→ = -4.05135
Approximately, log 23^-3 = -4
Hope it helps
abhi178:
By the way , @snehitha how you got same concept , becoz this is totally my assumption .
Answered by
0
Exact value we can't get without using table or calculator but we can find out approximately value by using some rule of Logarithms .
Here,
log(23)^-3
[ we know, logxⁿ = nlogx ]
= -3log(23)
we know,
20 < 23 < 25
log20 < log23 < log25
log(10 ×2) < log23 < log(5×5)
log10 + log2 < log23 < 2log5
1 + log2 < log23 < 2log5
we know,
log2 = 0.3031
log5 = 0.6989
use , this here,
1 + 0.3031 < log23 < 2(0.6989)
1.3031 < log23 < 1.3978
multiply with -3 , then inequality change
-3(1.3031) > -3log23 > -3(1.3978)
-4.1934 < -3log23 < -3.9093
-4.1934 < log(23)^-3 < -3.9093
hence, value of log(23)^-3 is average of (-4.1934) and (-3.9093)
log(23)^-3 ≈ ( -4.1934 -3.9093)/2
log(23)^-3 ≈ -4.05135
hence, approximately value of
log(23)^-3 = -4.0
Here,
log(23)^-3
[ we know, logxⁿ = nlogx ]
= -3log(23)
we know,
20 < 23 < 25
log20 < log23 < log25
log(10 ×2) < log23 < log(5×5)
log10 + log2 < log23 < 2log5
1 + log2 < log23 < 2log5
we know,
log2 = 0.3031
log5 = 0.6989
use , this here,
1 + 0.3031 < log23 < 2(0.6989)
1.3031 < log23 < 1.3978
multiply with -3 , then inequality change
-3(1.3031) > -3log23 > -3(1.3978)
-4.1934 < -3log23 < -3.9093
-4.1934 < log(23)^-3 < -3.9093
hence, value of log(23)^-3 is average of (-4.1934) and (-3.9093)
log(23)^-3 ≈ ( -4.1934 -3.9093)/2
log(23)^-3 ≈ -4.05135
hence, approximately value of
log(23)^-3 = -4.0
Similar questions