√23+√528 = 2√3 + √11
Answers
Answered by
0
i hope it helpful to you
Attachments:
![](https://hi-static.z-dn.net/files/d75/e127b8cb9e9aa5dc1ca3b976773b279c.jpg)
Answered by
0
Frist squaring both the sides we get
![(\sqrt{23} + \sqrt{528} )2 =( 2 \sqrt{3} + \sqrt{11})2 (\sqrt{23} + \sqrt{528} )2 =( 2 \sqrt{3} + \sqrt{11})2](https://tex.z-dn.net/?f=+%28%5Csqrt%7B23%7D+%2B+%5Csqrt%7B528%7D+%292+%3D%28+2+%5Csqrt%7B3%7D+%2B+%5Csqrt%7B11%7D%292+)
now apply the identity
![23 + 2 \times \sqrt{23} \times \sqrt{528 } + 528 23 + 2 \times \sqrt{23} \times \sqrt{528 } + 528](https://tex.z-dn.net/?f=23+%2B+2+%5Ctimes+%5Csqrt%7B23%7D+%5Ctimes+%5Csqrt%7B528+%7D+%2B+528)
=
![12 + 2 \times \sqrt[2]{3} \times \sqrt{11} + 11 12 + 2 \times \sqrt[2]{3} \times \sqrt{11} + 11](https://tex.z-dn.net/?f=12+%2B+2+%5Ctimes+%5Csqrt%5B2%5D%7B3%7D+%5Ctimes+%5Csqrt%7B11%7D+%2B+11)
Now , after solving we get
551+24288=23+132
24839/=(not equal)155
so it there is no solution
now apply the identity
=
Now , after solving we get
551+24288=23+132
24839/=(not equal)155
so it there is no solution
Similar questions