Math, asked by navedansari1021, 1 year ago

23. Determine the value of k for which the given system of equations has no solution 3x – 4y + 7 = 0, kx + 3y – 5 = 0

Answers

Answered by QGP
9
Hey There,

Let us first understand the answer with General Form. 

Let the two equations be:

 a_1x+b_1y+c_1 \, and \\ \\ a_2x+b_2y+c_2


For the system of equations to have no solution, the condition is  


\frac{a_1}{a_2}=\frac{b_1}{b_2}\neq\frac{c_1}{c_2} 

Here, your equations are: 

3x - 4y + 7 = 0   and
kx + 3y - 5 = 0 
Here we can easily see that

\frac{b_1}{b_2}\neq\frac{c_1}{c_2}



So, using \frac{a_1}{a_2}=\frac{b_1}{b_2} we have 


\frac{3}{k}=\frac{-4}{3} \\ \\ \implies k=\frac{3\times 3}{-4} \\ \\ \\ \implies \boxed{k=\frac{-9}{4}}


Hope it helps
Purva
Brainly Community


Answered by Anonymous
106

 \sf \: a_1 x + b_1y+c_1= 0


 \sf \: <br />a_2 \: a=x+b_2 \: y+c_1=0


 \color{blue} \sf \: No solution =  &gt;  \frac{a_1}{a_2}  =  \frac{b_1}{b_2}   \: \cancel{ = } \:  \frac{c_1}{c_2}


 \sf \: 3x - 4y + 7 = 0 \:  \: ... \boxed1


 \sf \: k_x + 3y - 5 = 0 \:  \: ... \boxed2


 \sf \: a_1 = 3

 \sf \: b_1 = 4

 \sf \: c_1 =  +  \: 7


 \sf \: a_2 = k


 \sf \: b_2 = 3


 \sf \: c_2 =  - 5

 \sf \:  \frac{3}{k}  =  \frac{ - 4}{3}  \:  \cancel{ = } \:  \frac{7}{ - 5}


 \sf \:  \frac{3}{k}  =  \frac{ - 4}{3}

 \sf \:  \frac{k}{3}  =  \frac{ - 3}{4}  =  \boxed{ \sf \: k =  \frac{ - 9}{4} }

Similar questions