23. If A + B + C = π/2, then what is the
value of nan A tan B + tan B tan c +
tan C tan A
Answers
Answer:
If A + B + C = π/2, then tan A tan B + tan B tan c + tan C tan A = 1
Step-by-step explanation:
A + B + C = π/2
⇒ A + B = π/2 - C
⇒ tan(A+B) = tan( π/2 - C)
⇒ tanA + tanB/ 1 - tanA. tanB = cotC
⇒ tanA + tanB/ 1 - tanA. tanB = 1/tanC
⇒ tanC ( tanA + tanB ) = 1 - tanA. tanB
⇒ tan A tan B + tan B tan c + tan C tan A = 1
Therefore, Answer will be 1.
The value of Tan A Tan B + Tan B Tan C + Tan A Tan C is 1 .
Step-by-step explanation:
Given as :
A + B + C =
The value of Tan A Tan B + Tan B Tan C + Tan C Tan A
According to question
∵ A + B + C =
A + B = - C
Taking Tan both side
Tan (A + B) = Tan ( - C )
= Cot C
=
Cross multiplication
Or, Tan C ( Tan A + Tan B ) = 1 - Tan A Tan B
Or, Tan C Tan B + Tan B Tan C = 1 - Tan A Tan B
So, Tan C Tan B + Tan B Tan C + Tan A Tan B = 1
Hence, The value of Tan A Tan B + Tan B Tan C + Tan A Tan C is 1 . Answer