Math, asked by sitarakhatoonpatna90, 8 months ago

23. The base of an isosceles
triangle is 16cm, and its area is
48cm.sq. The perimeter of the
triangle is?​

Answers

Answered by Anonymous
3

☢️\:\:\huge\bigstar\rm\blue{GIVEN}\:\:\bigstar

  • The Base of an Isosceles triangle is 16cm.

  • The area of triangle is 48cm.sq.

  • AB=AC

\:\:\huge\bigstar\rm\blue{TO\:FIND}\:\:\bigstar

  • The Perimeter if a triangle.

\:\:\huge\bigstar\tt\red{CONSTRUCTION}\:\:\bigstar

  • Draw a triangle ABC From \angle{A} Draw a perpendicular to Base BC.

\:\:\huge\bigstar\rm\red{FORMULAE\:USED}\:\:\bigstar

  • {\boxed{\rm{\blue{Area\:of\:Triangle=\frac{1}{2}\times{Base}\times{Height}}}}}

  • {\boxed{\rm{\blue{Pythogoras\:Theorem}}}}

Now,

  • we will First find out height AD using the Formula 1,then we will Find out the perimeter of triangle

\implies\tt\blue{Area\:of\:triangle=\dfrac{1}{2}\times{Base}\times{Height}}

\implies\tt\blue{48cm.sq.=\dfrac{1}{\cancel{2}}\times{\cancel{16}}^8\times{h}}

\implies\tt\blue{48=8h}

\implies\tt\blue{h=\dfrac{\cancel{48}}{\cancel{6}}}

Thus, The height of triangle is 6cm.(AD)

Now,

In ∆ACD

\implies\tt\red{CD=\frac{BD}{2}=8cm,AD=6cm,AC?}

Using pythogoras theorem.

\implies\rm\blue{(AD)^2+(CD)^2=(AC)^2}

\implies\rm\blue{(6)^2+(8)^2=(AC)^2}

\implies\rm\blue{(100)=(AC)^2}

\implies\rm\blue{AC=10cm}

Hence, AC=AB=10cm.

Perimeter of Triangle= AB+AC+AD=10+10+16=36cm.

Hence,

The perimeter of triangle is 36cm.

Answered by Anonymous
23

★ See this attachment ...

Attachments:
Similar questions