Math, asked by vennela94, 9 months ago

23. The latus rectum subtends a right angle
at the centre of the ellipse then its
eccentricity is
1) 2 sin 18
2) 2 cos 18
3) 2 sin 54
4) 2 cos 54°​

Answers

Answered by Anonymous
67

\sf\red{\underbrace{Answer \implies 2\:sin\:18\degree}}

\sf{\underline{\underline{Given:}}}

\sf{The\:latus\:rectum\:subtends\:a\:right\:angle}\sf{at\:the\:centre\:of\:the\:ellipse}

\sf{\underline{\underline{To\:Find:}}}

\sf{Eccentricity = \:......?}

\sf{\underline{\underline{SoLUtION:}}}

\sf{ If\:latus\:rectum\:subtends\:right\:angle}\sf{at\:the\:centre,\:then,}

\sf\purple{\implies tan\:45\degree = \dfrac{\dfrac{{b}^{2}}{{a}^{2}}}{ae}}

\sf\orange{\implies  e = \dfrac{{b}^{2}}{{a}^{2}} = 1 - {e}^{2}}

\sf\green{\implies {e}^{2} + e - 1 = 0}

\sf\red{\implies e = \dfrac{ -1 + \sqrt{5}}{2} = 2\:sin\:18\degree}

\sf{\underline{\underline{Hence:}}}

\sf\green{Eccentricity = 2\:sin\:18\degree}

Similar questions