Math, asked by dashdurga97, 6 months ago

236. The angle between the lines x - 2y = 2
and y-2x = 5 is
(A) tan' (1/4)
(B) tan (35)
(C) tan(5/4)
(D) tan' (2/3)​

Answers

Answered by amansharma264
101

EXPLANATION.

Angles between the lines x - 2y = 2.

y - 2x = 5.

→ Slope of line y = mx + c.

→ Slope of line x - 2y = 2

→ 2y = 2 - x

→ y = 2/2 - x/2.

→ Slope = -1/2.

→ Slope of line y - 2x = 5.

→ y = 2x + 5

→ Slope = 2.

 \sf \:  \implies \:  \tan( \theta)  =  | \dfrac{ m_{1} \:  -  \:  m_{2}  }{1 \:  +  \:  m_{1} m_{2} } | \\  \\   \sf \:  \implies \:  \tan( \theta)  =  \:  | \dfrac{  \frac{ - 1}{2} - 2 }{1 +  \dfrac{ - 1}{2} \times 2 } |  \\  \\  \sf \:  \implies \:  \tan( \theta)  =  | \dfrac{ \dfrac{ - 1 - 4}{2} }{1 - 1} |  \\  \\  \sf \:  \implies \:  \tan( \theta)  = 0

Answered by TheBrainlyopekaa
248

Angles between the lines x - 2y = 2.

y - 2x = 5.

→ Slope of line y = mx + c.→ Slope of line x - 2y

= 2→ 2y

= 2 - x→ y

= 2/2 - x/2

 \leadsto \:  \ \mathfrak{tan ( \theta) =  |  \frac{ m_{1} -  m_{2} }{1 +  m_{1}   m_{2}  }   | } \\  \\  \\  \leadsto \mathfrak{tan ( \theta) =  | \frac{  \frac{ - 1}{2} - 2 }{1 +  \frac{ - 1}{2} \times 2 }  | } \\  \\  \\  \leadsto \mathfrak{ tan( \theta) =  \frac{  \frac{ - 1 - 4}{2} }{ |1 - 1| } } \\  \\  \\  \leadsto \mathfrak{ tan( \theta) = 0}


Pranavkumar04112004: bhai toh iska answer kya hai
Pranavkumar04112004: sorry maine dekha nhi sahi hai Tq
Similar questions