Math, asked by venkatesh1064066, 2 months ago

24(3a^2-b^2)=37ab then a:b is?​

Answers

Answered by Swarup1998
2

Given:

24(3a^{2}-b^{2})=37ab

To find: a:b

Step-by-step explanation:

Given, 24(3a^{2}-b^{2})=37ab

\Rightarrow 72a^{2}-24b^{2}=37ab

  • take all the terms in the left hand side

\Rightarrow 72a^{2}-24b^{2}-37ab=0

  • rearrange the terms for a middle term factorization

\Rightarrow 72a^{2}-37ab-24b^{2}=0

\Rightarrow 72a^{2}-(64-27)ab-24b^{2}=0

\Rightarrow 72a^{2}-64ab+27ab-24b^{2}=0

\Rightarrow 8a(9a-8b)+3b(9a-8b)=0

\Rightarrow (9a-8b)(8a+3b)=0

\therefore either 9a-8b=0 or, 8a+3b=0

\Rightarrow 9a=8b or, 8a=-3b

In order to find the ratio of a and b, we take only the positive value.

i.e., 9a=8b

\Rightarrow \dfrac{a}{b}=\dfrac{8}{9}

\Rightarrow a:b=8:9

Answer: a:b=8:9

Similar questions