24. Solve for x and y, if 2x + 3y = 8 and x - 2y + 3 = 0
Answers
Step-by-step explanation:
GivenLinearpairofequations:
2x+3y = 8 \: --(1)2x+3y=8−−(1)
\begin{gathered}\begin {tabular}{|c|c|c|}\cline{1-3} x&-2&4\\\cline{1-3} y&4&0\\\cline{1-3} (x,y)&A(-2,4)&B(4,0)\\\cline{1-3} \end {tabular}\end{gathered}
and \: x - 2y + 3 = 0 \: --(2)andx−2y+3=0−−(2)
\begin{gathered}\begin {tabular}{|c|c|c|}\cline{1-3} x&-1&3\\\cline{1-3} y&-2&0\\\cline{1-3} (x,y)&C(-1,-2)&D(3,0)\\\cline{1-3} \end {tabular}\end{gathered}
Now , Plotting the points A,B on the graph and joining them we get a straight line .
And , Plotting the points C,D on the graph and joining them we get another straight line .
These two straight lines intersect at point P.
Finding Coordinates of point P :
2x + 3y = 8 \: --(1)2x+3y=8−−(1)
and \: x = 3 + 2y \: ---(2)andx=3+2y−−−(2)
/* Put x = 3 + 2y in equation (1) , we get */
2(3+2y) + 3y = 82(3+2y)+3y=8
\implies 6 + 4y + 3y = 8⟹6+4y+3y=8
\implies 7y = 8 - 6⟹7y=8−6
\implies y = \frac{2}{7}⟹y=
7
2
Now , value \: of \: y \: in /:equation \: (2) , we \:getNow,valueofyin/:equation(2),weget
x = 3 + 2 \times \frac{2}{7}x=3+2×
7
2
\implies x = \frac{21+4}{7}⟹x=
7
21+4
\implies x = \frac{25}{7}⟹x=
7
25
\red{Required \: Solution }RequiredSolution
\green { = P\Big(\frac{25}{7} , \frac{2}{7}\Big)
•••♪