Math, asked by bhaska260199, 9 months ago

ఒక ట్యాంకని నింపుటకు ,కలిచేయుటకు కూడా బూస్టర్ పంపుని వాడవచ్చు.ట్యాంక్ ఘణపరిమానం2400మీ,నిండే గణపరిమానం కంటే కాళీ చేసే గణపరిమానం నిమసానికి 10మీ ఎక్కువ రేటుతో వుంటూ,ట్యాంక్ కాళీ చేసే సమయం కంటే నింపే సమయం 8నిమిషాలు ఎక్కువైతే పంపు నిమిషానికి ఎంత గణపరిమానం రేటుతో నింపేటట్లుగా ఉన్నది​

Answers

Answered by sharmagurjeet
0

Answer:

వైశాల్యం అనగా సమతలంలో ఒక ద్విమితీయ ఆకారం ఆక్రమించే స్థల పరిమాణం. దీన్ని అర్థం చేసుకొనుటకు ఒక నిర్ణీత మందముగల ఆకారమునకు మొదటి కోట్ గా దాని ఉపరితలమునకు సరిపడే రంగువేయుటలో ఆక్రమించు స్థల పరిమాణం.[1] ఇది ఒక వక్రతలమునకు యొక్క (ఏక మితీయ భావన) లేదా ఒక ఘన పదార్థం యొక్క ఘనపరిమాణము (త్రి మితీయ భావన) లకు వాటి పొడవులో గల ద్విమితీయ భావన.

ఒక ఆకారము యొక్క వైశాల్యమును నిర్ణీత పరిమాణము గల చదరాలతో పోల్చి చెబుతారు[2]. అంతర్జాతీయ ప్రమాణాలు వ్యవస్థ (SI) పద్ధతిలో వైశాల్యమునకు ప్రమాణాలు "చదరపు మీటర్లు" లేదా "స్క్వేర్ మీటర్లు" (దీనిని m2గా వ్రాస్తాము). చదరపు మీటరు అనగా ఒక మీటరు భుజం గల చదరపు వైశాల్యము[3]. ఒక ఆకారం యొక్క వైశాల్యము మూడు చదరపు మీటర్లు అనగా మూడు ఒక మీటరు భుజము గల చదరాల వైశాల్యములకు సమానం. గణిత శాస్త్రములో ప్రమాణ చదరము అనగా ఏదైనా ఒక ఆకారం యొక్క వైశాల్యం, వాస్తవ సంఖ్యలతో కొలతలేని తలము లేదా ఆకారం యొక్క వైశాల్యము.

కొన్ని సాధరణ ఆకారాలైన త్రిభుజాల, దీర్ఘచతురస్రాల, వృత్తాల యొక్క వైశాల్యములకు సంబంధించిన సూత్రములు అందరికీ సుపరిచితమే. ఈ సూత్రములనుపయోగించి ఒక బహుభుజి యొక్క వైశాల్యమును వివిధ త్రిభుజాలుగా విడగొట్టి వాటి మొత్తము వైశాల్యమును గణించి కనుగొనవచ్చును[4]

వక్ర సరిహద్దు గల ఆకారాలకు వైశాల్యాలను కలన గణితం ఉపయోగించి కనుగొనవచ్చును. నిజానికి,కలన గణిత అభివృద్ధికి ప్రధాన ప్రేరణ యేమిటంటే సమతల పటాలకు వైశాల్యమును గణించుటలో సమస్యలు.[5]

ఒక ఘనాకృతిలో గల ఆకారాలైన గోళం, శంకువు, లేదా స్థూపం వంటివాటి ఉపరితల మొత్తము వైశాల్యాన్ని ఉపరితల వైశాల్యము అంటారు[1][6]. సాధారణ గోళముల యొక్క ఉపరితల వైశాల్యములను ప్రాచీన గ్రీకు గణిత శాస్త్రవేత్తలు గణించారు. కానీ యితర సంకిష్ట ఆకారముల యొక్క ఉపరితల వైశాల్యములను సాధారణంగా అనేక చరరాశులతో కూడిన కలన గణితాన్ని ఉపయోగిస్తాము.

నవీన గణిత శాస్త్రములో వైశాల్యము అనునది ముఖ్యమైన పాత్ర వహిస్తుంది. యిది జ్యామితి, కలనగణితం లతో పాటు సరళ బీజగణితంలో నిర్ధారకముల నిర్వచముల కొరకు, అవకలన జ్యామితిలో ఉపరితలాల ప్రాథమిక ధర్మాలను తెలుసుకొనుటకు ఉపయోగపడుతుంది[7]. విశ్లేషణలో ఒక తలం యొక్క ఉపసమితి యొక్క వైశాల్యమును లెబెగూ కొలతతో నిర్వచించవచ్చు[8][9] సాధారణంగా వైశాల్యము ఉన్నత గణిత శాస్త్రములో ద్విమితీయ ప్రాంతములలో ఘనపరిమాణము యొక్క ప్రత్యేక సందర్భముగా చెప్పబడుతుంది[1].

please follow me and mark my answer in brain list ♥️ ♥️♥️♥️

Similar questions